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IMPROVEMENTS OF THE RECOGNITION AND  

GENERALIZATION CAPACITIES OF THE NONLINEAR SOFT 

MARGIN SUPPORT VECTOR MACHINES 
 

   Abstract. The aim of the paper is to develop a comparative analysis on the 

recognition and generalization capacities of some new variants of soft margin SVM 

resulted by refinements of weighting parameters and the bias. The core part of the 

paper is the fourth section, where a modified gradient ascent method for learning 

non-linear soft margin SVM is proposed. Several strategies for data driven control 

of the parameters in the learning of soft margin non-linear SVM are proposed in 

the fifth section and a comparative analysis of the recognition and generalization 

capacities of the resulted classifier against some of the most frequently used classi-

fiers is developed. The experimental analysis was performed on artificially gener-

ated data as well as on Ripley and MONK’s datasets reported in the fifth section of 

the paper. The tests confirmed substantial improvements from both point of views, 

recognition rate and generalization capacities as well as a faster convergence of 

the learning process. The final part contains a series of experimentally derived 

conclusions and some suggestions for further work. 
   Keywords: non-linear support vector machines, soft margin SVM, SMO 

Platt’s algorithm, gradient-based learning, classifier design and evaluation, mod-
el-free learning, data driven control of parameters. 
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1. Introduction 

A classification problem can be modeled many ways, one of them can be described 

as follows. Assume that the aim is to discriminate among the instantiations of m 

concepts or classes, conventionally represented by the labels . Each 

instantiation comes from one and only one concept, refered as the true provenance 

class. The usual representation of instantiations is in terms of a pre-selected finite 
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set of n descriptors or attributes. In the real world problems, one is forced to 

consider non-homogenous set of descriptors in the sense that some of them are 

nominals, other can be categorical or of continous type.  

For simplicity sake, in the following we assume that the set of descriptors is 

homogenous, all of them being of continous type, therefore each instance can be 

represented by a particular point in  (the input space). The images of the 

concepts in  are conventionaly called classes. As an working assumption, the 

set of classes determined by a particular set of descriptors is taken as a partition of 

the input space.  The structure of a classifier system involves three components, G 

(the generator), S (the system), and LM (the learning machine). The instances are 

generated by the component G using a certain sampling mechanism usually 

unknown to the observer. In a probabilistic framework, the unknown mechanism 

used by G to generate examples from  is modeled in terms of an unknown 

probability density function. The system S identifies for each example  its 

provenance class , the input/output dependency of S being 

unknown to the observer. The component LM implements a set  of  hypotheses 

concerning the unknown input/output dependency of S and produces, for each 

example  an output  representing a guess 

concerning  according to the current hypothesis . Therefore each 

particular hypothesis  can be viewed as a classifier of a certain type.  

The set  is selected by the observer and can contain different types of classifiers, 

some of them being parametrized and some others parameter-free. The aim is to 

design a strategy (a learning algorithm) to find out the most suitable hypothesis in 

order to explain the behavior of S, corresponding to an inference about the 

unknown input-output dependency of the system, or equivalently the class structure 

in the input space, based on a certain finite sequence of observations 

 taken on S. Consequently, a learning algorithm can be 

viewed as a search procedure in the space , that is data driven in the sense that 

following each observation , if  is the current hypothesis then a new 

“more fitted” hypothesis is identified on the basis of  and 

, where the performance is expressed in terms of a certain criterion 

function. Moreover, the found hypothesis should assure correct discrimination 

among the classes in the input space, that is to provide good generalization    

capacities.   

The criterion function evaluates, at each moment, the quality of the current 

hypothesis in approximating the unknown input/output dependency of S on the 
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basis of the evidence represented by the pairs  still observed. At the 

end of the searching process, the quality of the learned hypothesis  in 

approximating the input/output functionality of S depends on the particular set of 

hypotheses  as well as on the sequence  generated by G. Although 

in principle  can be assumed to be an universal set, in real world applications the 

set of hypotheses is such that to contain only “simple” elements in the sense that 

each element is a simple parametrized functional dependency on the entries of the 

input, usually of linear type, and the learning process is an adaptive way to adjust 

the parameters while new observations are collected. The most frequently case is 

the binary classification, when the examples come from two classes, the output of 

S being either 1 or -1.  

Since 1957, when the first adaptive learning procedure, known as the perceptron 

algorithm, was proposed by Rosenblatt (Rosenblatt, 1957), there have been pro-

posed a long series of more refined learning methods, most of them of gradient 

type (Levenberg, 1944; Marquardt, 1963) (Ho, Kashyap 1965; Ho, Kashyap 1966). 

Some alternative methods exploit the whole bunch of observations in order to iden-

tify a separating surfaces among the samples coming from different classes. In oth-

er words, the best hypothesis for being implemented at the level of the LM com-

ponent is computed off-line using the global information contained by the yet-seen 

samples.   

For simplicity sake, the functional expression of the desired separating surfaces is 

of linear type, that is the design of the classifier is such that the examples coming 

from different classes are separated by hyperplanes. Unfortunately, very often the 

subclasses of examples coming from different classes cannot be separated by hy-

perplanes and moreover the cost of designing more refined classifiers of non-linear 

type is too high. Recently, the methods based on kernels supplied reasonable solu-

tions in these cases (Abe, 2010; Shawe-Taylor, Cristianini, 2000; Shawe-Taylor, 

Cristianini, 2004;. Liu, Principe, Haykin, 2010).  

Of a crucial importance are the contributions of Vapnik (Vapnik, 1995; Vapnik, 

1998), founding the statistical learning theory. One of the most efficient classifier 

from the point of view of generalization capacities is Support Vector Machine 

(SVM), also introduced by Vapnik. 

The aim of the paper is to develop a comparative analysis on the recognition and 

generalization capacities of some new variants of soft margin SVM resulted by re-

finements of weighting parameters and the bias. The introductory part is followed 

by a brief presentation of the non-linear SVM and soft margin SVM supplied in the 

first two sections. The core part of the paper is represented by the fourth section, 

where a modified gradient ascent method for learning non-linear soft margin SVM 

is presented. In order to solve the resulted QP-problem, a variant of Platt’s SMO 

algorithm is presented in the final part of the fourth section. Several strategies for 

data driven control of the parameters in the learning of soft margin non-linear SVM 
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are proposed in the fifth section together with a comparative analysis of the recog-

nition and generalization capacities of the resulted classifier against some of the 

most frequently used classifiers. The tests were performed on artificially generated 

data as well as on two standard datasets, Ripley and MONK’s. The tests pointed 

out that the variation of the recognition rates depends also on the inner structure of 

the classes from which the learning data come as well as on their separability   

degree. The final part of the paper contains a series of experimentally derived con-

clusions and some suggestions for further work.   

 

2. The non-linear SVM   

Let us denote by , the collection 

of examples coming from two classes, each pair  representing an example 

 generated by the G component and  the output of S, the true provenance 

class. We say that  is linearly separable if there exists a hyperplane in the space 

of inputs separating the subset of examples for which S emits (-1) of the subset for 

which S emits (1). In real world applications, it is either very difficult or even im-

possible to check whether  is linearly separable. 

On one hand, the information concerning the classes in the input space is provided 

exclusively by the examples generated by G and fed to S. Consequently, even 

when  happens to be linearly separable, there are no reasons to assume that the 

classes in the input space are also linearly separable. On the other hand, we would 

like to implement at the level of the LM component a classifier having good gener-

alization capacities, that is to discriminate as well as possible not only between the 

known examples provided by G, but for new unseen examples coming from the 

same classes.  

In order to extract as much information as possible from  concerning the incom-

pletely known classes in the input space, possibly residing from the hidden struc-

ture of the set of selected descriptors, a non-linear transform of the given data onto 

a new space is hoped to be useful in order to reveal some new information con-

cerning these classes. A second reason to look for a non-linear transform projecting 

the collection  onto a new space comes from the fact that the separability degree 

between images of the classes in the new space could be increased. In such a case, 

obviously, the separability degree between the subsets of examples from  for 

which S computes 1, -1 respectively is also increased, sometimes the images of 

these subsets becoming linearly separable.            

From mathematical point of view, the non-linear transform is a vector valued func-

tion , the image of  in the space  being given by the set of new 

representations of the given data 
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. The transform g is referred 

as a feature extractor, and  is called the feature space, its dimension being not 

necessarily finite.  

Assuming that the  is at least “almost linearly separable”, it appears quite natu-

ral to use linear classifiers in the feature space, that is to implement at the level of 

the LM component a set of hypothesis , where each particular hypothesis  

corresponds to the parameters of a linear classifier in the space . When the di-

mension of  is finite, say m, a hypothesis  corresponds to a pair 

, and, for the input x, according to , the LM component com-

putes the output .   

The performance of the resulted classifier is essentially determined by the feature 

extractor g, as well as by the particular parameter . Concerning the design of 

the feature extractor g, the main problem is to select a particular functional expres-

sion of g, such that, on one hand,  is almost linearly separable, and on the other 

hand the computational complexity involved by the estimation process of the pa-

rameter  is kept at a reasonable level. The “kernel trick” provides a solution 

to these problems. It consists in selecting a function K that “covers” the explicit 

functional expression of g, therefore the evaluation of the expression 

 is performed exclusively in terms of K. Since g is “hidden” by K, 

the resulted feature space cannot be explicitly known, therefore its dimension may 

be even infinite. The core result in approaches of this type is the celebrated theo-

rem due to Mercer (Mercer, 1908). According to this results, if  

is a continuous symmetric function, the existence of a func-

tion g such that for any  
 
holds, is guaranteed 

in case K satisfies a set of quite general conditions. A series of particular expres-

sions of kernels satisfying the Mercer’s conditions have been extensively used in 

the published literature (Abe, 2010). In the following we use two of them, namely 

the Gauss Radial Basis Function (GRBF),  

and the Exponential Radial Basis Function (ERBF), 

.             

Since  is finite, in case it is linearly separable in the space , there are an infi-

nite number of classifiers 
 

that separate the given data without errors.  

Let us assume that for a selected kernel K,  is linearly separable. Then we could 
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search for a linear classifier in  that offers the best generalization capacity in the 

sense that it still classifies at least “almost correctly”, new, unseen yet examples. 

This requirement may be formulated as the task to determine the parameters  

such that the hyperplane of equation  is as equidistant as possible 

to all images of the training data in the feature space, therefore it is aimed to sepa-

rate the examples of  with the largest “gap” between positive and negative ex-

amples. Such a classifier is referred as an optimal margin classifier.  

Stated in mathematical terms, the problem is formulated as follows. Let K be a 

kernel and g be the induced feature extractor, An optimal margin classifier is a so-

lution of the constrained QP problem (Vapnik, 1995), 

 
its corresponding dual problem being the constrained QP problem imposed on the 

objective function , 

 

Let  be a solution of (2). In case , the example  is 

called a support vector (Vapnik, 1995). Since the solutions of (2) do not involve the 

parameter b, its value should be determined such that 

holds, therefore more 

options concerning  are allowed. If   is a solution of (2), 

then the optimal hypothesis  corresponds to , where  

 

and one of the most used expression of  is (Abe, 2010; Shawe-Taylor, 

Cristianini, 2000) 
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Being given the sequence of observations , according to the optimal hypothesis 

, in case a new input x is provided by G, the computed output of the LM com-

ponent is , where  if and only if 

. 

 

3. Soft Margin SVM 

Let us assume now that for a selected kernel K,  is non-linearly separable. Then 

we could search for a classifier  such that according to its corresponding 

hypothesis , the LM component “imitates” as much as possible the behavior of S. 

This idea can be formulated in mathematical terms as follows. 

Let us denote by g the feature extractor such that  and  

a hypothesis corresponding to the linear classifier in the feature space of parameter 

, that is, for the input x,  the output of the LM component is  if 

and only if . The model of the non-linear SVM can be extended 

by including the slack variables , where  expresses the magnitude of 

the error committed by  for the observation , that is 

.  

For any misclassified example , the value of  expresses the magnitude of 

the error committed by the hypothesis  with respect to . The overall im-

portance of the cumulated errors usually can be expressed as  

 

where F is a convex and monotone increasing function and  is a weight pa-

rameter.  

Therefore, by combining additively the objective function of the problem (1) with 

the overall effect of the errors (5), we obtain a new QP problem (Cortez, Vapnik, 

1995) 
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where C is a conventionally selected constant used to weight the effect of the cu-

mulated errors.   

Being given its complexity, the problem (6) cannot be solved in this general form, 

but only for particular functional expressions of F and the weight parameter t. The 

simplest model uses  and , the problem (6) becoming the con-

strained QP-problem 

 
whose dual QP-problem is  

 
where  

 

As in case of the non-linear SVM, if  is a solution of (8), 

then the parameters  are given by (3) and (4). 

 
4. Learning Algorithms of Nonlinear Soft Margin SVM  

According to the arguments supplied in the Section 3, the computation of the soft 

margin SVM separating hyperplane corresponds to solving the QP-problem (8). In 

this section we present a modified gradient ascent method and a variant of the 

Platt’s SMO algorithm to approximate a solution of (8). 

4.1. Modified Gradient Ascent Method for Learning Nonlinear Soft Margin 

SVM 
The learning rule of gradient ascent type for linear SVM proposed in (State, Co-

cianu, Vlamos, 2011) can be extended to the non-linear case of Soft Margin SVM 

as follows. Let  be the set of ob-

servations taken on S. For simplicity sake, we assume that the outputs of the first m, 

N-m inputs are 1, -1 respectively. By straightforward computations, the entries of 

the gradient  and the Hessian matrix are  

 



 

 

 

 

 

Improvements of the Recognition and Generalization Capacities of the Nonlinear 

Soft Margin Support vector machines 

__________________________________________________________ 

 

 

      

 

Note that is a negative semi-defined matrix. If  is the current value 

of the parameter , then the updating rule of a gradient type learning algorithm is  

 
where 0  is the learning rate. 

Since the parameter  has to satisfy the constraints 

  and , the updating rule (11) should be 

modified to assure that the updated parameter still belongs to the space of the fea-

sible solutions of (8). Consequently, we propose a modified learning rule which is 

a tradeoff of the gradient ascent method and the requirements imposed by the con-

straints of (8). In our approach, we select two entries to be modified; let be 

the indices of the entries in the current parameter vector selected for being 

updated, . We denote by  a weighting 

parameter expressing the relative “influence” of  and  

on the direction of the updating displacement. Consequently, according to the gra-

dient ascent rule, the updated values of the entries  should be given by 

(11). However, one or both updated values could fail to satisfy the constraints of 

the QP-problem (8). Consequently, the updating rule should assure that the new 

parameter  still satisfies the constraints and the search direction is selected such 

that to maximize . Let us assume that the search direction repre-

sented by  is somehow determined. Then the entries of the updated pa-

rameter  are    

 
where 

 and 

. Note that the search direction  should satisfy the addi-
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tional constraints , , and . The fact that 

the updated parameter satisfies the constraints of the problem (8) stems from the 

following arguments. First of all, since  and , 

according to (12) we get . Also,  implies 

. Now we have to argue that the conditions  

also hold. Indeed, we distinguish the following cases 

a) If , then , therefore   

b) If and , then , , 

therefore , hence . Consequently, 

 and . Obviously, a simi-

lar argument holds in case and     

c) If and , then , 

, that is 

 

The indices  involved in the updating step should be selected such that to 

assure the local maximization of . Using first order approxima-

tions,  

 

 

 
Consequently, in order to assure increasing values of the objective function, the 

pair of indices  should be such that the following conditions hold (State, 

Cocianu, Vlamos, 2011) 
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The implementation of the resulted adaptive learning algorithm uses a given pa-

rameter  controlling the accuracy such that when at least one of the condi-

tions (14), (15) holds, the learning process is stopped.   

                            (14) 

for all  

 

    

 

4.2. A Variant of Platt’s SMO algorithm  
The aim is to propose a variant of the Platt’s SMO algorithm for solving the dual 

QP-problem (8). 

Sequential minimal optimization (SMO) algorithm was introduced by Platt (J. Platt, 

1998) and further extended by several authors (Keerthi, Shevade, 2003; Knebel, 

Hochreiter, Obermayer, 2008)  is a simple algorithm that allows to solve the 

SVM-QP problem without extra-matrix storage by decomposing the overall 

QP-problem into simple QP sub-problems similar to Osuna’s method (Osuna, 

Freund, Girosi, 1997). The idea of the SMO algorithm (J. Platt, 1998) is to solve 

the smallest optimization problem at each step, in case of the QP-problem corre-

sponding to the soft margin SVM, the smallest optimization sub-problem involving 

only two Lagrange multipliers. The reason of optimizing two Lagrange multipliers 

comes from the requirement that the entries of the parameter  should satisfy the 

constraint . At every step, according to the SMO algorithm, two 

Lagrange multipliers are selected to jointly optimize, the optimal values for these 

multipliers are found and performs updates to reflect the new optimal values. The 

computation can be briefly described as follows. Being selected two Lagrange 

multipliers, SMO computes the constraints on these multipliers and solves for the 

constraint maximum. The bound constraints cause the Lagrange multipliers to lie 

within a box, while the linear quality constraint causes the Lagrange multipliers to 

lie on a diagonal line, that is the constraint maximum of the objective function 

must lie on a diagonal line segment too.    

Let  be a Mercer kernel and  its corresponding feature extractor, that is 

. Let us denote by , 

where  is the parameter of a separating hyperplane. Then 

 

The idea of the SMO algorithm is to use a predefined constant , and 
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a tolerance parameter , expressing a sort of tradeoff between accuracy and 

efficiency. At each step two examples ,  are looked for such that 

the following condition holds, 

 

Let us assume that, at the current step, there exists at least a pair ,  

for which (17) holds. The entries  and  of the current parameter  are 

modified such that to increase and to decrease .  

Since the updated parameter has to fulfill the constraint , the updat-

ing rules are, 

 

 

where  

 

If the conditions  and  do not hold, the value 

of the tolerance parameter  should be decrease accordingly. In case, at a certain 

step, there are no examples ,  such that (17) holds, the search 

process is stopped.  

Our variant of the Platt’s SMO algorithm uses the following updating rules. Let 

,  be a pair of examples such that (17) holds, and the current 

parameter. Then,  

 

 

where  is given by (18). The value of the parameter  should be adjusted to as-

sure that the updated values  and  still belong to . Our option is for 

the following adjusting strategy. Assume that at least one of the entries  

does not belong to .  
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a) If , then  is set to . Indeed, since 

,  and , therefore at least one of the entries  

does not belong to  means that at least one of the inequalities 

,  holds. 

a1.If , then setting , we get 

, and . 

a2. If , then setting , we get , and 

. 

 Obviously   

b) If  then  is set to . In order to 

prove that the new setting of  assures that  and  belong to , 

let us analyze the following two cases. Obviously, in this case at least one 

of the entries  does not belong to , that is  and/or 

. 

b1. If  , then taking  we get 

, , and . 

b2. If  then setting  and using similar arguments 

we get that both updated entries belong to .  

c) If  then  is set to . In this case when 

the condition that both belong to  is violated, then at least 

one of the inequalities  holds. 

c1. If  , then , therefore  

and . 

c2. Similarly, if  then  so  

and . 

d)  If , then  is set to . In this case at 

least one of the inequalities ,  holds. 

d1.If , then , and using the obvious relation 

we get , and . 
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d2. If , then , therefore , and 

.  

The implementation of this variant of the Platt’s SMO algorithm uses the stopping 

condition  defined in terms of the tolerance parameter  and  

when there is no pair of examples ,  such that (17) holds. 

 

5. Strategies for Heuristic Data Driven Control of the Parameters. Experi-

mental Analysis  
The developments in this section analyze the effects of different choices of the bias 

parameter  on the generalization capacities of the resulted non-linear soft mar-

gin SVM classifier.  

As it is presented in Section 4, the learning rule (12) involves the displacement pa-

rameter  

 
The learning rate  and the weight  should be taken such that the 

search process is optimized from both point of views, accuracy and efficiency. In 

order to obtain good approximations of the maxima values of the objective function, 

in our tests we used .  

In our approach, the weight parameter  is computed from data as follows. Let 

 be the sample means and sample covariance matrices comput-

ed on the basis of the samples labeled by 1 and -1 in the feature space, where g is a 

particular feature extractor. We denote by K the kernel generated by g, that is 

. Since we assumed the first m examples as coming from the 

first class and the next N-m examples as coming from the second class, we get, 
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In (Cocianu, State, 2013) we proposed a new expression of the weight parameter 

computed in terms of first and second order sample statistics , 

where . 

Note that the expression of  is inspired from arguments coming from mathe-

matical statistics, based on Fisher information coefficient. Moreover, it can be 

computed in terms of the values of the kernel K as follows 

 
where 

 

 
(Cocianu, State, 2013). 

It is well known that the value of the bias parameter  cannot be computed by 

solving the QP-problem (8) and there have been proposed several computation 

rules expressed in terms of the support vectors, as for instance (4). In our develop-

ments we used the expression (20) proposed in (An, Liang, 2013) and we      

introduced the expressions (21) and (22),  

where , and SV is the set of support 

vectors, in order to refine the bias by taking into account the relative importance of 

the support vectors.  
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The effects of different choices of the bias  on the quality of the resulted classi-

fier have been evaluated on experimental basis, and the results of these compara-

tive analysis are presented in the following.  

Our tests were performed on artificially generated data from Gaussian repartitions, 
and on Ripley and Monk’s databases (http://archive.ics.uci.edu/ml/index.html). 
Also, we used two types of kernels, GRBF and ERBF, where the value of the pa-
rameter  was determined such that the recognition rate is optimized. The com-
parative analysis of the resulted gradient ascent algorithm (GRAD algorithm) was 
performed against the implementation of the variant of Platt’s SMO presented in 
Section 4.2, the linear and the quadratic discriminant function classifiers respec-
tively, and the classifier based on Mahalanobis-type discriminant function supplied 
by MATLAB. 
 
Test 1. The first series of tests were performed on data of different sizes generated 

from two Gaussian repartitions. For instance, the results of one of these tests 

performed on data generated from bi-dimensional Gaussian repartitions, where the 

design data consisted of 100 examples coming from each class and the test data 

contained 300 examples coming from each class are shown in Figure 1. The re-

sulted support vectors in cases the kernels GRBF and ERBF respectively were used, 

are presented in Figure 2. The results of the comparative analysis in case the data 

were generated from  and  are 

summarized in Table1. The best recognition rate 95% was obtained in case of the 

GRAD algorithm with ERBF kernel  and the bias set to either to  or 

, the approximation of the solution being computed in 378 iterations.  

http://archive.ics.uci.edu/ml/index.html
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  The training dataset          The test dataset 

             Figure 1 

 
The support vectors in case of GRBF   The support vectors in case of ERBF 

             Figure 2 

 

Table 1 

Method Recognition 
rate 

Linear discriminant 
function 

93.83% 

Quadratic 
discriminant 
function 

94% 

Mahalanobis-type 
discriminant 
function 

93.50% 

Method Recognition 
rate 

Number of 
iterations 

Bias  

Soft margin SVM 
SMO algorithm 
Gauss kernel 

94.33% 780 
 

0.01 

Soft margin SVM 94.83% 549 
 

0.01 
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GRAD algorithm 
Gauss kernel 
Soft margin SVM 
SMO algorithm 
Exponential kernel 

94.67% 1020 
 

0.05 

Soft margin SVM 
GRAD algorithm 
Exponential kernel 

95% 378 
 

0.03 

 
 

Test2. The Ripley dataset consists of 1250 bi-dimensional samples containing data 

coming from two classes. The training set contains 125 samples and the testing set 

contains 500 samples coming from each class. The training and test sets are shown 

in Figure 3 and the support vectors computed by GRBF and ERBF respectively are 

depicted in Figure 4. The best performance was obtained by GRAD algorithm us-

ing the ERBF kernel, and bias was set either to  or , the approxi-

mation of the solution being computed in 457 iterations yielding to the recognition 

rate 91.40%. The results are summarized in Table 2. 

 

 
      The training dataset         The test dataset 

             Figure 3 
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The support vectors using the Gauss kernel The support vectors using the 

exponential kernel 

              Figure 4 

 

 

Table 2 

 

Method Recognition 
rate 

Linear discriminant 
function 

89.20% 

Quadratic 
discriminant 
function 

89.80% 

Mahalanobis-type 
discriminant 
function 

89.10% 

Method Recognition 
rate 

Number of 
iterations 

Bias  

Soft margin SVM 
SMO algorithm 
Gauss kernel 

89.60% 1512 
 

0.2 

Soft margin SVM 
GRAD algorithm 
Gauss kernel 

89.90% 425 
 

0.2 

Soft margin SVM 
SMO algorithm 
Exponential kernel 

91.40% 1064 
 

0.01 

Soft margin SVM 
GRAD algorithm 
Exponential kernel 

91.40% 457 
,  

0.01 
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Test 3. The MONK’s dataset 3 (with noise) 

The MONK's dataset 3 is derived from a domain in which each training ex-

ample is represented by six discrete-valued attributes. Experiments were performed 

on data resulted by superimposing noise on the training examples. The training da-

ta contains 62, 60 examples respectively coming from the two classes and the test 

data is represented by a collection of 204 examples coming from one class and 228 

examples coming from the other class. The results are summarized in Table 3. The 

best recognition rate 94.44% was achieved by GRAD algorithm when the ERBF 

kernel  was used and the bias was . However, it seems that the GRAD 

algorithm should be preferred because it computes a good approximation of the 

solution in a far less number of iterations.   

 

Table 3  

Method Recognition 
rate 

Linear discriminant 
function 

80.90% 

Quadratic 
discriminant 
function 

89.02% 

Mahalanobis-type 
discriminant 
function 

87.32% 

Method Recognition 
rate 

Number of 
iterations 

Bias  

Soft margin SVM 
SMO algorithm 
Gauss kernel 

91.44% 845 
,  

1.5 

Soft margin SVM 
GRAD algorithm 
Gauss kernel 

91.76% 195 
 

1.5 

Soft margin SVM 
SMO algorithm 
Exponential kernel 

94.21% 207 
 

1.5 

Soft margin SVM 
GRAD algorithm 
Exponential kernel 

94.44% 86 
 

1.5 

 

6. Conclusions and Suggestion for Further Work 

In the paper we propose a modified gradient ascent method for solving the dual 

problem of nonlinear soft margin SVM together with two new expressions of the 

bias.  
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The proposed variant of the gradient ascent learning algorithm is somehow heuris-

tically justified in the sense that there is no mathematically founded proof of the 

convergence properties. Therefore, several tests were performed in order to derive 

conclusions on experimental basis. The tests pointed out good convergence proper-

ties and, moreover, the proposed modified variants proved higher convergence 

rates as compared to the Platt’s SMO algorithm. The experimental analysis aimed 

to derive conclusions on the recognition rate as well as on the generalization capac-

ities.  

The comparative analysis was developed in terms of a long series of tests per-

formed on artificially generated data as well as on standard databases. In Section 5 

are summarized the results obtained on artificial data generated from multivariate 

Gaussian repartitions and on the Ripley and Monk’s databases 

(http://archive.ics.uci.edu/ml/index.html).   

The tests pointed out that the variation of the recognition rates depends also on the 

inner structure of the classes from which the learning data come as well as on their 

separability degree. Consequently, the results are encouraging and entail future 

work toward extending these refinements to multi-class classification problems and 

approaches in a fuzzy-based framework. 
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