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DECISIONAL SIMULATION WITHIN SOCIO-PRODUCTIVE 
SYSTEMS WITH ENTROPY 

 
 

Abstract: The entire decisional simulation cycle of socio-productive 

systems obeys the three research levels: analysis, designing and management of 

the simulation activity. The analysis represents the research process of the 

system’s component with the purpose of highlighting the following issues: the role 

of the system within the economic enterprise system; their horizontal and vertical 

interaction within the organisational structure; the status and decision variables – 

controllable or uncontrollable, which determines the running of the system; the 

identification of atypical behaviours and factors which influence the good running 

of the system and which cannot be included in the category of disruptive factors. 

The management of the simulation activity represents the whole set of planned 

procedures in view of grouping structures, phenomena and processes analysed 

and/or designed. By dint of this management a concise and clear formulation 

results for: the object of the simulation; the purposes pursued; ways of achieving 

the simulation; preserving, maintaining and updating the essential information 

achieved as a result of the simulation. 

Key words: simulation, socio-productive system, the storage of the 

system, status variable, status entropy.  
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1. Introduction 
 
 The complexity, dimension and the scope of the economic problems 

specific to socio-productive systems require, on the one hand, the structuring and 

systematisation of their entire simulation activity in view of solving them. On the 

other hand, they require the adequacy of a relative independence resulted from the 

very nature of thinking, personality and professional education of analysts. In 

other words, the stages of creating a simulation procedure are not compulsory, but 

they cannot be entirely neglected, because there is minimum number of stages and 
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sub-stages for which the optional character is not permitted. One of the major 

purposes of the analysis of socio-economic systems in general and of socio-

productive systems in  particular is [17] to evaluate the extent to which the internal 

actions of the system can modify the status in a positive way and the extent to 

which this initiative depends on external factors. 

N.G.Roengen’s (1979) demonstration [9] regarding the way the entropy law 

acts on any economic system, no matter its size, complexity and role, represents 

the starting point of theoretical issues with remarkable practical consequences. 

These consequences will be presented below.  

Developing the conceptual elements of the paper [9] this article will 

investigate possible solutions for a set of fundamental issues such as: 

a. Can a social-economic system pass from a given status into any other desired 

status? 

b. Entropy, in its thermodynamics meaning, is a measure of a system’s 

obsolescence. Is there any other type of entropy which leads to the 

“acceleration” of the thermodynamics entropy in the case of economic-social 

structures? 

c. Is efficiency the cornerstone of the economic science? Is it the ultimate and 

unique evaluation criterion of the socio-economic systems? 

d. Where does the action of efficiency start and end; what comes before and after 

it? 

e. How can be defined the concept of economic system leaving out any 

ideology? 

 

2. The storage of socio-productive systems 
 

Both in the theory and practice of economics [8], [16] any socio-productive 

system is characterised by a set of indicators more or less continually changing, by 

dint of which one can have a clear view of “the status” of the system concerned. 

Often, these indicators are designed on a wider or narrower time horizon. Thus, 

they are designed for the short or long term. We mention that very seldom are the 

effective and structural elements analysed and outlined so that there is at least one 

perspective if not a real correlation as close as possible to the potential of the 

system. This potential has to allow it to reach the planned objectives and, as a 

consequence, to minimise the distance between the future projections and the real 

statuses that the production system concern will record. 

Next, we will assign the values meant to be reached as “command vectors” 

and the real values “response vectors”. Obviously, any variation of the values of 

the command vectors from the values of the response vectors in absolute and 

relative terms will certainly highlight a certain “status” of the system and at least 

two main aspects: 

1. the extent to which anticipations have considered the real status of the 

production system; 
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2. the extent to which the system is able to respond to instructions at a certain 

moment and under certain circumstances (not in “any” given conditions). 

Let us consider the general cybernetic scheme of a system (Figure 1) with the 

mention that, in its known form, it hides an essential aspect. 

 

 

 
Figure 1: The General Cybernetic Scheme of a System 

 

 

 

where: 

X – the vector of entry data; 

Y – the vector of exit data; 

R – the corrections vector. 

The relation describing the running of the cybernetic system represented 

above has the following form: 

Y(tn) = F[X(tn),R(tn)].                                            (1) 

 

Usually, the size of the exit vector does not correspond to the desired one 

(commanded or command). This causes the buyer to act as a regulatory element. 

Implicitly, any additional component (in a functional view) in the system will 

result in a “delay”. Given this, the above scheme will turn into Figure 2. 
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Figure 2: New General Cybernetic Scheme of a System 

 

 

 

In this case, the function describing the system in Figure 2 are the following: 

 

Y(tn+1) = F[X(tn),Y(tn)]                                                                       (2) 

 

Z(tn) = G[X(tn),Y(tn)].                                                                         (3) 

 

If in relation (2) we substitute n -> n-1, we obtain: 

 

Y(tn)  = F[X(tn-1),Y(tn-1)],                                                                    (4) 

 

Substituting relation (4) into relation (3) we obtain: 

 

 Z(tn) = G{X(tn),F[X(tn-1),Y(tn-1)]}                                                       (5)  

 

We notice that according to relation (5) the exit of the system (Z) at a point in 

time (tn) depends both on the entries in the system at the given time and on its 

previous status F[X(tn-1),Y(tn-1)]. 

In other words, the production systems, no matter their type and size, “store” 

their status, being cybernetic systems characterised by self-regulation ability. 

Therefore, we can state that production systems are “systems with storage”.  

Based on the previous demonstrations, we can state the following principle: 

any socio-productive system stores its status. The corollary of this principle is 

that a socio-productive system cannot pass from one status to any other. 
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3. The status of socio-productive systems 
 

The definition of the status variables are especially the quantification of the 

status of a production system is, in the economic theory and practice, [1] issues still 

insufficiently tackled and analysed. This is why will be made several theoretical 

remarks based on the logics of the economic processes, in a tight correlation with 

the objective reality and the economic practice. For a start, we will define the 

status of socio-productive systems (this concept is clearly outlined and defined, 

especially useful in natural sciences – Physics, Chemistry etc.) 

In most of the economic analyses of some production processes a wide range 

of indicators is used (cost, profit, production, productivity etc.). These indicators 

have are threefold: from the point of view of the person performing the analysis 

and designing the activity of a production system on a time horizon they can be 

considered both entry and/or exit variables (in this case, the indicators are 

accompanied by certain performance indicators) and status variables. According to 

[3], status variables correspond to the set of values of some significant values, 

which characterise the evolution and dynamics of a system at certain moments in 

time (initial, intermediary, final). 

As an example, let us consider the indicator “the total cost of production” with 

the remark that the reasoning, conclusions and generalisation do not change if any 

other indicator are considered at a later stage. 

In the economic practice [6], the cost generally represents a value indicator 

that expresses the effort of a production system from the standpoint of different 

resources consumption (entry variables), in order to achieve a certain production 

(exit variable). As a consequence, this indicator can be considered either an entry 

variable or an exit variable. Using it, we will characterise the “status” of the 

production system concerned and will transform this indicator into status variable.  

To this purpose, we will consider a time span [0, T] with the discreet time 

sequences t1,t2, t3,,...... tn, so that [T K , T K + 1 ] C …. Where k=1, …, n. 

Let us consider the vector of planned costs Cp and the vector of the incurred 

costs Cr (the command and the response vectors) corresponding to these time 

spans. 

Let us denote: 

Cp = [C1 p,C2 p,  . .. . .Cn p], the command vector of costs 

and  

Cr = [C1 r, C2 r, .....Cn r], the response vector   

It is obvious that along the time span considered [0, T] there is a certain 

variation between the two vectors, which regularly transmits just post-factum 

information. This means that at a specific moment the incurred cost is different 

from the planned one or that there is or there is not a certain level of “savings”. We 

set forward to identify, however, a variable that gives us additional information and 

probably more useful and with a diminished post-factum character. This variable 
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has to convey information that, starting from the results obtained, can justify a 

possible substantial cost-reduction policy for the next period. If we denote by pi the 

probability that at the time moment ti  the incurred cost is equal or within given 

permitted limits as compared to the planned one, then a measure of the running of 

the production system under analysis over the time span considered “could be 

supplied” by the following relation: 

 H= ∑
∞

=

×−
0

lg
i

ii pp ,                                                                      (6) 

where H is the entropy of the system in relation with the production costs. 

 

We state that the measure of the system’s entropy ”could be supplied” by 

relation (6) on the following ground: it is a sufficient reason that if the probability 

pi is nil even for one single time span the relation cannot be applied anymore or the 

result is useless. In case the permitted limits of the variation between the incurred 

and the planned cost increase so that every pi cannot be nil the following question 

arises: does the result obtained have a satisfactory level of accuracy, quality and 

confidence? 

Let us also consider the case where all pi =1 and H=0. A nil entropy represents 

the fact that the production system worked ideally over the time span considered 

and any type of uncertainty regarding the probability of obtaining equality between 

the incurred and planned cost is eliminated. Thus, we have decided upon at least 

two significant causes out of which resulted that a relation of type (6) is does not 

always hold true. 

Resuming the issue of costs as status variables we will perform the following 

operations: 

a. we introduce the ratio  

i

ipI 1, + = 
pi

pi

C

C

,

,1+
                                                                                  (7) 

where  
i

ipI 1, +  is the coefficient of variation of two subsequent components of 

the command vector of costs. 

b. similarly we constitute the following ratio for the response vector of costs  

 
i

irI 1, + = 
ri

ri

C

C

,

,1+
                                                                                 (8) 

where 
i

irI 1, +  is the same coefficient, but concerning the response vector of total 

costs. 

 

Using the two ratios, the vectors below are generated: 

Ip = [ ]n

npippp IIII 1,

1

1,

2

3,

1

2, .................. ++ , 

and 
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Ir = ]...........[ 1,

1

1,

2

3,

1

2,

n

nrirrr IIII ++    respectively. 

 

We notice that the two relations highlight the evolution of the command 

vector (Ip)  and of the response vector (Ir). In other words, we have transferred the 

variable of total cost either at the entry or at the exit into the system, transforming 

in into status variable.     

At the end of these considerations, we state the following hypotheses, which 

will be used next and which state that the quantitative and qualitative measurement 

of a system can be defined only if the following are known: 

a. the direction of evolution (if the system is ordered to move in a certain 

direction, then the answer has to vary in the same way; otherwise the system 

is either uncontrollable or its management can be considered inefficient). 

b. the relative variation of the response measure from the command one (it 

shows the extent to which the system is correctly commanded, which means if 

the command is in accordance with the status). 

c. the absolute variation of response measures towards commands.  

Under these additional hypotheses we can go on to determine an indicator that 

can be a measure of the general status of a system. 

 

4. The status entropy of socio-productive systems 
 

Let us consider a random system S that at a certain moment is characterised 

by an entry vector, a status and an exit one (Figure 3):  

 

 
Figure 3: Schema of a Random System 

 

 

Let us define the correctly estimated internal status (L0) as being the status 

of system for which we seek the perfect conformance between the command 
and response measures (in other words, between the components of the command 

and response vector). In other words, there is a command variable 
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( )00

2

0

10 ,......., nxxxx  for which the answer ( )00

2

0

10 ,......., nyyyy   could be obtained 

only if the status of the system is ( )00

2

0

10 ,......., nllll . 

The vector xo,  of components ( )00

2

0

1 ,......., nxxx  is called command vector in 

utter conformance with the status. Let us also consider the following hypotheses: 

the application of a command vector in utter conformance with the status cannot 

conduct to an answer 0YY ≠ . 

 

However, we assume that at a certain moment we apply a command vector 

0XX ≠  and the answer is 0YY ≠ . In this case the system records an 

uncontrollable variation resulting to certain extent in an instantaneous 
impairment of its internal status. To this status we associate the concept of 

status entropy (which is different from the entropy from thermodynamics despite 

the fact that it leads to the variation speed of the former as we can see below)[12]. 

For a better clarification let us consider two examples (one belonging to the 

socio-productive field and the other from engineering): 

a. Let us consider a production system A for which the technical and material 

supply is done in strict conformance (qualitatively and quantitatively) with the 

existing technologies. The other elements of the production process are 

considered to be objectives at the level concerned. It is obvious that the 

response of the system (for instance, the production as well as the costs from a 

qualitative and a quantitative perspective) will be the estimated one. If, 

however, a certain material is not in conformance with the required quality 

level or if it has a higher price or if it is not in the sufficient quantity the 

system will either have a higher specific consumption or it will exceed the 

costs or it will not reach the planned level of production. In any situation, the 

production system will be instantaneously “marked” by a deviation or 

impairment of its internal status, which leads to an increase in its status 

entropy. 

b. Let us now consider a vehicle for which the fuel used is the one recommended 

in its technical handbook. Thus, let us assume it will respond in a time span of 

12s under the acceleration command from 0 to 100km/h (we assume there is 

no other failure). If we use fuel with a higher or lower octane number than the 

recommended one then the speed of 100km/h will be reached in a longer or 

shorter time span or in the same time span the technical state will 

instantaneously be damaged. In this case, the status entropy will arise. 

 

Next, we will try to build a computation methodology of status entropy, an 

evaluation, a measure of the internal status of a socio-productive system and not an 

“indicator” of these statuses. This would not be possible for a simple reason: we do 

not possess a technology capable of measuring such a status. We are going to show 

it next that, even if we had one, this would be impossible to achieve due to the 
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infinite number of statuses that could be reached even in a small and relative 

simple system. This would be even more complicated in a large and complex 

system like the production system. Let us start by setting the goal of determining 

the number of statuses that a system with 10 components can go through (serial, 

parallel or mixt), given that there can only be two relations among the components. 

Graphically, such a system would look like Figure 4. 

 

 

 
Figure 4: The Production System 

 
 

Under the conditions of such a system – with small dimensions and a 

minimum number of connections among the components the number of possible 

statuses will be: 

 
2790910)110(10)1( 103.12222 •≈=== •−−nn

 

 

It results that for a small and relatively simple system a number of statuses in 

other forms cannot be imagined. In this, we will have to reduce this number to an 

adequate one, which is especially necessary from a practical standpoint. The 

problem to be solved is the following: 

Let us consider a time span [0,T]. We will generate subsequent and discreet 

time spans ( t k , t k + 1 ) ,  nk ,1=  (the fact that the time spans are considered to be 

discreet or continuous does not influence the degree of generality of the solution). 

On each of these time spans we apply the commands xk to system A and we obtain  

the response measures yk. We seek to estimate the status entropy of the system 

under analysis. 
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In order to solve this problem we consider the following: 

a. we denote the status vector “a” with the components: a1,a2,a3, the vector: 

][ 321 aaaa =  where components ai,  3.1=i   can only take the binary 

values 0 and 1. 

b. the components of vector “a” have the following meaning: 

- a1 defines the conformance between the direction of evolution of the 

command and that of the response; 

- a2 defines the conformance between the relative variation of the response 

as compared to the planned one; 

- a3 defines the conformance between the absolute variation of the 

response as compared to the planned one. 

c. the components of the status vectors can take the following values: 

 

a1= 

 

0, if the evolution direction of the response is the same as the one of the 

command; 

 

1, otherwise; 

 

a2= 

 

0, if the variation of the response in relative values is smaller than a 

maximum permitted value (let us denote it by p);  

 

1, otherwise; 

 

a3= 

 

0, if the variation of the response in absolute values is smaller than a 

maximum permitted value (let us denote it by p); 

 

1, otherwise. 

 

d. we define the vector in utter conformance with the status as being: ||a||=[000]. 

 

From the presentation above we can notice that at the level of a production 

system (regardless the size and nature) a standardized number of maximum 8 

statuses has been obtained (Table 1). 
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Table 1 
No. Status 

vector 

Binary status 

of the 

components 

of the status 

Binary 

complement 

 

Decimal 

correspondent 

(cz) 

Modified decimal 

correspondent 

(C’Z) 

(0) (1) (2) (3) (4)   . (5) 

1. a0 0 0 0 1 1 1 7 8 

2. a1 0 0 1 1 1 0 6 7 

3. a2 0 1 0 1 0 1 5 6 

4. a3 0 1 1 1 0 0 4 5 

5. a4 1 0 0 0 1 1 3 4 

6. a5 1 0 1 0 1 0 2 3 

7. a6 1 1 0 0 0 1 1 2 

8. a7 1 1 1 0 0 0 0 1 

 

 

We associate the complement and its decimal correspondent to each binary 

status, obtaining the data in columns (3) and (4).  

 

We define the modified decimal correspondent (C’Z)  according to the 

relation: 

C’Z= CZ +1                                                                              (9)  

 

Using relation (9) the last column of Table 1 is filled. 

 

We define the probability that at a given time moment (tk)  the system was in 

the status ao (the utter conformance of the command status). It is the ratio between 

the modified correspondent of the vector aj and the one corresponding to the vector 

a0. 

'

'

0Z

Z

k
C

C
p

jk

=                                                                                   (10) 

where 7.1=j . 
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5. Example of simulation of the status of a socio-productive system 
 

Over a quarter, a company sets the following goals: 

1. diminishing costs by 2-5%; 

2. the costs reduction should be 1.3 - 2 billion lei; 

3. increasing the physical production by 1.5% - 2% 

4. the additional value of production should be 2.5 - 3 billion lei. 

 

We estimate the status entropy of the system related to the goals set knowing 

that: 

1. the cost reduction was 1.57%; 

2. the value of the reduction was 1.2 billion lei; 

3. the physical production increased by 1.3%; 

4. the additional value of production was 2.8 billion lei. 

 

We will make computations at two levels: the cost level and the physical 

production level. 

From the point of view of costs, we have the following comparisons: 

- point 1 was partially achieved: a1 = l şi a2 = 0 

- point 2 was not achieved: a3 = 0 

 

It results that the costs status vector has the components [100], and its 

modified decimal correspondent is 4 (corresponding to a4). The probability to have 

had a command in conformance with the status is: 

50.0
8

4
1 ==p  

Similarly, the same is applied for production and we obtain the vector of 

components [101] (a1=1, a2=0, a3 =1) 

And thus: 

40.0
8

5
2 ==p  

The status entropy has the form: 

n

pp

h

n

i

ii∑
=

•

−= 1

lg

                                                                      (11) 

 

where: n=the number of factors considered. 

 

For our hypothetical situation (n=2) it results: 

 

h = 0.5 * lg 0.5 + 0.4 * lg 0.4   ≈  _    0.5 * (-0.30103) + 0.4 * (-0.39794) ≈ 0.31 

  2     2 



 

 

 

 

 

 
Decisional Simulation within Socio-productive Systems with Entropy 

__________________________________________________________________ 

 

  

which shows a low level of the status entropy. Furthermore, we can state that: 

- the status of the production system is relatively good (the commands were 

responded to) 

- the decision factor did not reach the quality level intended. 

 

We now own a computation tool useful for indicating with a high probability 

what can be expected and not from a certain production system from different 

angles. 

We consider that we already know the maximum status entropy within the 

given system {hmax) and we introduce the ratio  

maxh

h
R =                                                                                            (12) 

Obviously, 0 < R < 1. With the aid of  this ratio we introduce the concept of 

effectiveness of the production system, shown by the relation: 

r = 1 - R.                                                                                      (13) 

 

For eliminating any confusion between the terms effectiveness and status 

entropy we consider that additional explanations are useful. 

 

We can draw the conclusion that the status entropy occurs instantaneously as a 

consequence of nonconformance situations between commands and the real status 

of the system at a given moment. These situations of nonconformance first of all 

display at the level of the structure of the system by transferring them from the 

coordinates of a normal running to those of “overuse” or “underuse”. These 

variations between relatively or extremely opposed statuses negatively and 

strongly influence the potential of the system, basically leading to the systematic 

increase in the variation between the planned and the incurred levels of costs and 

production. 

If the status entropy is a measure of instantaneous impairments resulted from 

the lack of conformance between command and system status [9], [11], the 

effectiveness is a measure of increasing or decreasing “variations”. Thus, this 

represents a measure of the capacities of the system to be efficient. 

It is practically impossible to have utter conformance between the command 

and the response vector because like any other type of system the socio-productive 

system needs some kind of flexibility in its running (in case it does not exist, it is 

implicitly achieved). In other words, it is desirable that to keep a certain “margin” 

when computing the value of the command vector instead of rendering it 

“inflexible” unsuccessfully trying to cancel the effects of the status entropy.  

 

The connectivity of the natural systems and that of the social life assume the 

propagation of the entropy from one system to another (Figure 5). 
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Figure 5: The Model of Entropy Propagation  

 

 

HX = the entropy propagated by supplying systems (raw materials, information, 

financial flows, legislation); 

HT = the internal entropy of effective sub-systems; 

HZ = the entropy of the macro-system (distribution markets, stock exchanges, 

financial environment etc.);  

HR= the entropy of the management system. 

 

The socio-productive entropy systems with constant objectives in time can be 

described (Figure 5) by the following matrix relations: 

 

][ YZRX −=∆                                                                                     (14) 

where: 

RHRR *=  

ZHZZ *=  

X∆ - The change of the entry values in order to obtain a process leading to the 

stability of the system. 

 

Next, we obtain: 

( ))()( YZRXTXXTY −+=∆+=                                                    (15) 

or: 
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T
RT

ZRX
Y *

*1

*

+

+
=                                                                             (15’) 

  

where: 

THTT *=  

XHXX *=  

 

Substituting Z, T, R and Z we obtain: 

 

RT

ZRXT

HRHT

HZHRHXHT
Y

***1

]****[*

+

+
=                                              (16) 

 

In order to highlight the relation between the four types of entropy we resort 

to the following simplifications: 

- X, T, Z, R will be considered unitary scalars (equal to 1); 

- The matrix functions of the entropies are also matrix with one element (of 

constant value). Setting the condition that Y=1, we will obtain: 

 

RT

ZRTXT

HH

HHHHH

*1

***
1

+

+
=                                                             (17) 

or: 

Z

T

X

R
H

H
H

H
−

−

=
1

1

                                                                               (17’)  

 

Setting some values for Hx, HT and Hz, by simulation we can obtain the 

behaviour of the system regarding the regulating factors as well as an extremely 

important managerial principle (Table 2). 
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Table 2 

HZ HX HT 

1 

HT 

HX – 1 

          HT 
1-HZ HR 

1.0 1 0 0.2 0 

0.8 1.25 -0.25 0.2 -1.25 

1.0 

0.6 1.67 -0.67 0.2 -3.35 

1.0 1 -0.2 0.2 -1 

0.8 1.25 -0.45 0.2 -2.25 

0.8 

0.6 1.67 -0.87 0.2 -4.35 

1.0 1 -0.4 0.2 -2.0 

0.8 1.25 -0.65 0.2 -3.25 

0.8 

0.6 

0.6 1.67 -1.07 0.2 -5.35 

1.0 1 0 0.3 0 

0.8 1.25 -0.25 0.3 -0.83 

1.0 

0.6 1.67 -0.67 0.3 -2.23 

1.0 1 -0.2 0.3 -0.67 

0.8 1.25 -0.45 0.3 -1.5 

0.8 

0.6 1.67 -0.87 0.3 -2.9 

1.0 1 -0.4 0.3 -1.33 

0.8 1.25 -0.65 0.3 -2.16 

0.7 

0.6 

0.6 1.67 -1.07 0.3 -3.57 

1.0 1 0 0.4 0 

0.8 1.25 -0.25 0.4 -0.625 

1.0 

0.6 1.67 -0.67 0.4 -1.675 

1.0 1 -0.2 0.4 -0.5 

0.8 1.25 -0.45 0.4 -1.125 

0.8 

0.6 1.67 -0.87 0.4 -2.175 

1.0 1 -0.4 0.4 -1 

0.8 1.25 -0.65 0.4 -1.625 

0.6 

0.6 

0.6 1.67 -1.07 0.4 -2.675 

 

By briefly analyzing the data in the table above it results that the influences on 

the regulating capacity decrease in the following order: 

- objectives 

- production capacities 

- entries. 

 

6. Conclusions 
In the study [18] regarding the mathematical theory of information it is proven 

for the first time that it is possible to define a measure of information with major 

impact on the communication theory and the theory of cybernetic systems 

regulations in general and of production systems in particular. The importance of 

this study is significant from at least two points of view: 
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a. many important problems regarding socio-productive systems can be 

successfully tackled in the light of regulation theory; 

b. theoretical approach is most often useful even though it does not have 

immediate and discreet applicability in the management practice, because it 

highlights main issues concerning the behavior of production systems. If they 

are neglected or ignored negative comparable consequences may arise within 

an unfavorable economic environment. 

These two aspects have been highlighted over the paper, which establishes 

new approaching directions of the relation between an efficient production system 

and an economic production system. The results of the above-mentioned reasoning 

allow us to define the principle according to which in order to maximize the 

results of the management sub-system of the production activity one has to pursue  

objectives stability  in the first place , followed by the stability of production 
capacities and finally the stability resources availability. 

Within such an approach, we consider that the effectiveness of a production 
system is bestowed by the extent to which the functions of the system ensure 
the achievement of some performance indicators, as well as its ability, safety 
and credibility in order to globally and utterly answer to the requirements of 
an efficient command vector. 
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