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Abstract. Economists attempting to estimate linear models 

are frequently restricted due to data scarcity in terms of short time 

series of data and also of parameter non constancy. In this case, a 

realistic alternative is often to guess rather than to estimate 

parameters of such models. An algorithm of repetitive guessing 

(drawing) parameters from iteratively changing distributions, with 

the objective of minimizing the squares of ex-post prediction errors, 

weighted by penalty weights and subject to a learning process, has 

been recently introduced and sufficient conditions for convergence 

were theoretically described. In this paper, Repetitive Stochastic 

Guesstimation (RSG) and Simulated Annealing (SA) are compared 

for the problem of a linear regression coefficients' estimation, when 

only small and undersized samples are available. A robust 

alternative - based on bootstrap confidence intervals - to the RSG is 

built: Repetitive Stochastic Bootstrapped Guesstimation 

(RSGBOOT). A Monte Carlo experiment is designed to compare 

performances of RSG, RSGBOOT and SA. In the second part, 

confidence intervals for the RSG point estimators are built in a 

Bayesian framework. Again, a Monte Carlo analysis is conducted 

in the case of a linear regression equation.  
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1. INTRODUCTION 

 Optimization problems surface regularly in statistical applications. Multi-

modal (eventually non-differentiable) 'cost functions' often appear in empirical 

econometrics. Several stochastic algorithms replace failure of gradient techniques 

in determining global extreme. Still, a hidden dependence within the particular 
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problem in hand between any optimization algorithm and the cost function 

considered was underlined in the article by Wolpert and Macready (1997). In that 

paper it is argued that the particulars of the cost function involved are crucial, and 

blind faith in an algorithm to search effectively across a broad class of problems is 

not justified. Thus, any results with a certain algorithm are applicable with certain 

success at the problem class presented. Potential generalizations have to be tested 

each time. This paper is analyzing the regression problem for small and undersized 

samples. A classical algorithm is compared with a newly introduced one: 

Simulated Annealing (SA) versus Repetitive Stochastic Guesstimation (RSG) (see 

Charmeza, 2002 and Agapie, 1999 for a comparison of SA and RSG). An 

improved version of RSG is built and compared to the previous two algorithms. In 

the second part of this paper the inclusion of prior information is put in a Bayesian 

framework and the attempt of building confidence intervals for the RSG estimators 

is sketched. Further research directions conclude the paper. 

 

2. REGRESSION PROBLEM FOR SMALL & UNDERSIZED 
SAMPLES 

Even if in almost econometric textbooks the problem of multi-colinearity is 

emphasized, a similar problem-concerning small sample size is quite often skipped. 

An extreme situation appears when the number of observations is smaller then the 

number of parameters to be estimated. In this case the sample estimations for 

coefficients are not unique. But this extreme case is easy enough to recognize. 

Problem of small sample size is subtler and yet very serious. It occurs when rank 

condition is barely satisfied and it is prevalent in empirical economics. 
The consequences of small sample size problems are serious. Precision of 

estimation is reduced. There are two aspects of this reduction: estimates may have 

large errors and will be very sensitive to sample data - in the sense that addition of 

few more observations can sometimes produce drastic shifts in the estimates. 

Problem of undersized samples arises when the rank condition is not satisfied due 

to the insufficient number of observations. Still, additional information about the 

values of the parameters to be estimated can allow for restricting the number of 

solutions to the unique one. Thus, considering the above aspects, estimation 

problem of the simplest, classical regression equation in the presence of undersized 

samples is dragged to the field of global optimization. In the next sections we will 

turn our attention to a relatively classical algorithm for global optimization (RSG) 

and compare it to the SA algorithm.  

 

3. BRIEF REVIEW OF REPETITIVE STOCHASTIC 
GUESSTIMATION AND SIMULATED ANNEALING 

In 1996 Charemza proposed a stochastic sampling method for dealing with non-

linear optimization tasks as well as with small sample size problems. A detailed 

description of this new technique – called Repetitive Stochastique Guesstimation 

(RSG) is given in Charemza (2002). Sufficient conditions for convergence are 
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derived in Agapie (2009).  This algorithm is very interesting since it contains 

different ideas from both global optimization field and econometric practice, and is 

placed on the boundary between classical and Bayesian econometrics.  
Three points are to be stressed: 

• At the initial stage RSG makes use of the prior beliefs concerning the 

parameters to be estimated (according to the economist’s expertise and 

intuition)  

• RSG is successively restricting the search space from one iteration to another, 

providing an asymptotic convergence of the algorithm in some extreme point 

• RSG uses two objective functions, instead of a single one. 

A straight implication of the first point is that there is dependence between the 

initial points and intervals considered and the RSG estimates. This dependence will 

be explored in the following sections. On the other hand, these prior beliefs about 

the initial values of the parameters and intervals can be quantified and analyzed in 

a Bayesian framework.  

The idea of running a searching algorithm from some expected valued for the 

parameters, according to experts intuition also appeared in Marcet's (1991) method 

of parameterized expectations. Concerning the second point, this restriction on 

search area retrieves the common sense expectation of “increasing the 

guesstimator’s confidence by narrowing the interval from which the parameters 

are to be guessed, as time goes on” (Charemza, 1996). On the other hand, the brute 

technique is similar to a search technique called 'Fibonacci search', first developed 

by Kiefer (1953). Fundamental differences are at the practical functions used for 

decreasing the successive intervals. The Fibonacci search is essentially 

deterministic and thus the intervals of uncertainty are governed by some difference 

equations. In the case of RSG algorithm, the intervals of uncertainty are 

probabilistic since they are dependent to a probabilistic-weighted objective 

function.  

Regarding the two criterions mentioned at the third point above, namely the 

non-weighted and weighted objective functions, the (penalty) weights in the last 

one are normally distributed according to the difference between the currently 

guess and the previous best guess. This makes RSG a dynamical optimization 

method, by making the objective function time dependent. Against the class of 

least-squares learning technique, RSG has the great advantage of being very easy 

to manipulate and able to deal with the undersized sample problems. SA can be 

traced to Metropolis algorithm, which attempts to simulate the behavior of an 

ensemble of atoms in equilibrium at a given temperature. Econometric applications 

of this algorithm are surveyed in Goffe, Ferrier and Rogers (1994). There are two 

common points with RSG: both algorithms make random extractions (by uniform 

probability distribution, commonly) in order to achieve new candidate solutions 

and they both depend on a strictly decreasing parameter (called temperature-in SA, 

and learning rate-in RSG). The major difference with SA is the fact that the 
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acceptance criterion is deterministic, in the sense that there is no chance for a 

‘worst’ value to be accepted like the current solution.  
 

4. IMPROVING ON THE RSG ALGORITHM: A 
BOOTSTRAP APPROACH 

A method for constructing likelihood based confidence regions for a vector 

parameter using the bootstrap and non-parametric density estimation is applied. 

The technique and its theoretical properties are described in Hall (1987).  

In our case, RSG replications for a given iteration are regarded as bootstrap 

selections from the current coefficient's distribution; a bootstrap-t confidence 

interval is computed and centered at the best parameter value computed at the 

previous iteration. At the next iteration, exploring the existent confidence interval 

computed at the previous iteration does both searching for better coefficient values 

and constructing confidence intervals. With this approach we make clear the trade 

between the number of iterations and replications; in this case is preferable a small 

number of iterations and a large number of replications. Technical details are given 

below.  

Suppose we have an initial value (starting value) for a coefficient, say 

C
initial

i  and lower and upper values for it: C
L

i , C
U

i . At iteration k, we extract 

some uniform ‘number of replications’ potential coefficients inside the interval  

(C L

i
, C

U

i ): C
1

i ,…C
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This modified version of RSG algorithm will be denoted RSGBOOT. 

 

5. COMPARING THE METHODS: A MONTE CARLO 
APPROACH AND NUMERICAL RESULTS 

Data generating process 
 

Consider the following linear regression equation: 

Y = X C+ ε  where: 

X  is a fixed in repetitive samples (n, p) matrix of explanatory variables 

generated from U(0,1);  

C is the (p, 1) vector of ‘true’ coefficients, generated once (at the 

beginning) from U(0,1);  

ε is an (n, 1) error-vector, sampled for each Monte Carlo replication from 

N(0,1). 

 

For each Monte Carlo replication, we compute Y and estimate coefficients using 

RSG, RSGBOOT and SA algorithms. The number of coefficients is varied from 1 

to 41 and the number of observations considered is n = 21. So, the degrees of 

freedom vary from 20 to –20. Since RSG, RSGBOOT and SA estimates are in fact 

dependent on the initial parameters and intervals a grid exploration for this 

dependence was performed. 10, 30, 50, 70 and 90% successively altered 

coefficients' starting values. For each parameter's initial value successive starting 

intervals considered that we could be wrong by 111, 145, 200, 333 and 1000%. 

Summing up, for each initial value and interval considered, one hundred Monte 

Carlo replications were performed for successively estimate 1 to 41 coefficients. 

Based on the results obtained after completing all Monte Carlo replications, 

average bias and average root mean square errors were computed. The number of 

RSG and RSGBOOT drift changes was 20 and, within one iteration, 50 replications 

were performed. In order to have a comparison between RSG and RSGBOOT one 

may built a 0-1 bias-score matrix with 25 lines - number of pairs (initial parameter 

value, initial interval) - and 41 columns (number of degrees of freedom). One on a 

certain position of the bias-score matrix means that the RSGBOOT 's average bias 

is smaller than RSG' s average bias. A similar 0-1 score matrix is considered for 

the root mean square error (rmse). A graphical representation for the two score-

matrixes (bias and rmse) is given in Figures 1-2. 
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Figure 1. Score-bias matrix 

 
Figure 2.  Score-rmse matrix 

 
 

On the Y-axis points from 1 to 25 give staring parameter values and intervals. If we 

denote with C
true

 the true value of a certain coefficient C, then the starting point 

for SA, RSG and RSGBOOT is: 

C
initial

= C
true

+ C
true

 ×  errat ×  (rrr > 0.5) − C true
 ×  errat × (rrr<0.5) 

where (rrr > 0.5) is one if a random uniform number rrr is higher then 0.5 and zero 

otherwise. The parameter ‘errat’ has the interpretation of ‘percentage alteration of 

the coefficient's true value’. The initial interval for the C
initial

 coefficient to be 

estimated is given by (C
initial

-ll; C
initial

+ll); ll=abs(C
initial

)/llu. 

For example, if number 1 on the Y-axis is associated to the pair (errat = 0.1, llu 

= 0.1) that means that the initial value of the coefficient was altered with 10% and 

we considered that we could be wrong with 1000%. Now, 1 corresponds to the pair 

(errat = 0.1, llu = 0.1), 2 to (errat = 0.1, llu = 0.3), 5 to (errat = 0.1, ll = 0.9), 6 to 

(errat = 0.3,llu = 0.1) and so on, up to 25, which corresponds to (errat = 0.9, llu = 

0.9). 

Looking at the graphical representation for the score_bias matrix it can be 

noticed that RSGBOOT's biases are in general smaller then RSG's when one deals 
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with high alteration for the initial values, large intervals and small to negative 

degrees of freedom. The second graph, the score_rmse matrix, underlines the fact 

that in general RSGBOOT's root mean square errors are smaller. In conclusion, 

RSGBOOT is a sort of 'robust' alternative, to be used in the case of small and 

undersized samples and when high degree of uncertainty governs the choice for 

initial values and intervals.  

When comparison against SA algorithm is performed, in all situations average 

bias is smaller than both RSG's and RSGBOOT's. Yet, differences are not flagrant. 

When positive to higher degrees of freedom are considered, the closer to SA is 

RSG. For negative degrees of freedom, RSGBOOT is the closest to SA. If root 

mean square error is the comparison criterion, RSGBOOT is comparable or even 

better than SA. This fact sustains the robustness of the bootstrapped version for 

RSG algorithm. 

Results concerning average bias and average rmse's are depicted in Figures 3-4. 

Initial coefficients values were altered with 90% and starting intervals considered 

that we could be wrong by 1000%. 

Figure 3. Average Bias 

 

Figure 4. Root Mean Square Errors 

 

 

6. BAYESIAN ANALYSIS FOR THE RSG ALGORITHM 

The scope of this section is to analyze, on a regression equation example, to 

what extent considering initial values to be estimated by the RSG algorithm can be 

compared to a Bayesian approach. If priors put on coefficients for RSG estimations 

can be assimilated with Bayesian priors, then it is possible to compute posterior 
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confidence intervals. A Monte Carlo experiment was performed to measure the 

adequacy of these intervals. It was counted the proportion of times that a posterior 

high probability region contains the true value of the parameter for repeated 

realizations of the posterior density. Conclusion is that priors on coefficients to be 

estimated with the use of RSG algorithm have a bayesian meaning just when we 

have reasonably degrees of freedom, higher or equal to eight. This result comes in 

the line with the observation that RSG estimates are consistent when degrees of 

freedom are increasing.  

6.1. The Bayesian framework 

Additional information on the parameters of a model can be quantified in a form 

of a distribution function named ‘a-priori distribution function’. 

If a likelihood function L (data/parameters) is available then ‘a-posteriori 

distribution’ of the parameters can be computed: f (parameter/data)∝ f 

(parameter) L (data/parameter) 

[according to usual operations with pdf’s : 

f (data, parameter) = L (data/parameter) f (parameter) 

    =f (parameter/data) f (data) 

⇒  

 f (parameter/data) = 
)(

)/()(

dataf

parameterdataLparameterf
] 

This ‘a-posteriori distribution’ of the parameters allow us to make inferences 

among them, which incorporates the effect of the additional information.  

 
6.2 Bootstrap Likelihood 

 

Serious data analysis requires serious considerations of the effect of model 

assumptions. In classical statistical theory it is usually only possible to construct 

likelihood-based regions when we have considerable information about the 

distribution of our statistic. When problem of estimating unknown distributions 

appears, bootstrap techniques might be considered (see e. g. Bădin, 2007).  

The Bayesian bootstrap is the Bayesian analogue of the bootstrap. Instead of 

simulating the sampling distribution of a statistic estimating a parameter, the 

Bayesian bootstrap simulates the posterior distribution of the parameter; 

operationally and inferentially the methods are quite similar. Because both methods 

of drawing inferences are based on somewhat peculiar model assumptions, neither 

method should be applied without some consideration of the reasonable of these 

model assumptions. Neither the bootstrap nor the Bayesian bootstrap presents a 

general panacea for avoiding sensitivity to model assumptions. 

In this section is performed an empirical application for the theoretical results 

given by Dennis Boss and John Monahan in the paper "Bootstrap methods using 

prior information". This is accomplished by replacing the likelihood in Bayes's 

formula by a bootstrap estimate of the sampling density of a robust estimator. 
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If Y1,…Yn are independent normal deviates with mean C then the likelihood for C 

can be expressed in terms of the  (sufficient ) statistic Y . 

If the number of observations, n, is not large enough, or if Y1,…Yn are not 

necessarily normal deviates but have a distribution hard to evaluate and if Ĉ is an 

estimator for the mean C suspected to be inefficient, then a ‘robust’ likelihood can 

be computed with the help of bootstrap technique. There are two principal steps in 

the development of this idea. First, generate B random samples from the empirical 

distribution of Y’s and for each sample estimate C. Get the B simulated estimates 

( )**

2

*

1
ˆ...ˆˆ

BCCC .  

Next, compute: L̂ = ∑
=

−

−−
−

−
B

r

B

r
CCC

B e
1

]

6
5

)*ˆˆ2(
[5.0

6
5

2

1

2

π . Then combine 

prior densities on coefficients expressing additional information and get the 

correspondent posterior densities. In the case of the RSG algorithm: C is the ‘true’ 

value of a coefficient, Cˆ stands for the RSG estimate of the C coefficient and 

( )
BrrC

...1

*

=  will be the bootstrapped RSG estimates of the C coefficient. 

6.3 Monte Carlo experiment: design and numerical results 

Consider the linear regression model: 

Y = X C+ε  where X = rndu (n, p) is fixed in repetitive samples 

C is a (p,1) vector of random variables 

ε = rndn (n, 1) is the vector of random perturbations to be added 

Assumptions: 

� for i = 1,…, p consider C i ∈ N(1/p, sigma) 

� for i, j =1.., p  C i and C j  are independent random variables 

Principal steps in performing this experiment follow. 

Step1   set 

• the number of extractions (no_ext) from a- priori distribution function of the 

coefficients’ vector 

• the number of bootstrap replications B required for the likelihood function 

computation 

• the number of Monte Carlo replications (MCR) 

              generate X = rndu (n, p) once and keep it fixed in repetitive samples 
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For each Monte Carlo replication, indexed by i (i=1,..,MCR) generate the vector 

of random perturbations 
)( iε and execute Step 2 : 

Step 2  set j=1; 

      do until  j > no_ext; 

� consider C
)( j
=[C

)(

1

j
,…,C )( j

p
] a realization of the random vector of 

coefficients C 

� compute Y
)( j
= X C

)( j
 +

)( iε  

� using the previous Y
)( j

 and X compute the vector of RSG-estimates for the 

coefficients: C
)(, jRSG

 

� by sampling with replacement B times from the residual vector 
)( iε compute 

correspondent B-bootstrapped RSG vectors  of coefficients C
RSG*,

 

� compute for each coefficient the bootstrapped likelihood function L̂  

� multiply L̂ with the correspondent a-priori distribution- denote with g the  

result 

j=j+1; 

end do; 

 

Results 

 

The following correspondence may be considered: 










)().....(

.....

1

1

p

p

CgCg

CC
 

 

Next:  

� adjust g to be a proper distribution (to integrate to one) 

� compute (bootstrap) confidence intervals around the mean of the g distribution 

� count how many times RSG estimates for the coefficients fall in these intervals  

Parameters for the presented model are as follows:   

� number of observations n=10 

� number of coefficients is varied from 1 to 20 (d.f. varies from 9 to –10) 

� number of extractions from the a-priori distribution no_ext =50 

� number of bootstrap replications (for computing the likelihood function) B=50 

� number of bootstrap replications for computing confidence intervals around 

the mean of a-posteriori distribution :50 

� number of Monte Carlo replications :10  
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Figure 5. A posteriori confidence intervals 

 
 

 

The results depicted in Figure 5 lead to the conclusion, that a posteriori confidence 

intervals can be computed in the case of degrees of freedom higher or equal to 8. 

Further Monte Carlo experiments have to be performed. The advantage of the 

method used is that it incorporates prior information, which performs well without 

direct knowledge of the RSG estimator distribution since the bootstrap estimate of 

the sampling density considered is a robust estimator. On the other hand, this sort 

of bayesian approach is feasible only when the number of observations is at least 

ten since otherwise repetitive selections with replacement from the empirical errors' 

distribution may be inappropriate. From this point of view, for example, it should 

be done a distinction between two degrees of freedom coming from ten 

observations and eight parameters to be estimated or four observations and two 

parameters to be estimated. 

 

 

7. ONE LOOK BACK, ONE GLANCE AHEAD 
A complete comparison among SA, RSG and RSGBOOT has to be done 

preliminary on every model to be estimated, linear or not, since these stochastic 

optimization algorithms are very sensitive to model specification. 
RSGBOOT can be considered the RSG's robust version, when high degrees of 

uncertainty are governing the initial conditions. 

Bayesian framework seems to be suitable for high enough degrees of freedom. 

When the number of available observations is higher than ten, no matter how many 

coefficients are to be estimated, the adequacy of a posteriori confidence intervals 

has to be studied in connection with the robust properties of the bootstrapped 

likelihood considered (e.g., considering various a priori variances attached, both 

time independent and dependent). Also, one has to distinct between, e.g., two 

degrees of freedom coming from four observations and two coefficients, and 

respectively coming from ten observations and eight coefficients. 

The problem of determining confidence intervals can be tested to both 

RSGBOOT and SA's point estimators in a similar manner. Eventual success could 
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have direct application, for instance in testing stationarity for very short time series 

- and many other similar problems. 
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