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THE RELATIVE PREDICTIVE ABILITY OF FORECAST 

WEIGHT AVERAGING AND MODEL AVERAGING 

PROCEDURE 

 
 

Abstract. This paper proposes a procedure called forecast weight 

averaging which is a specific combination of forecast weights obtained from 

different methods of constructing forecast weights for the purpose of improving the 

accuracy of pseudo out of sample forecasting. It is found that under certain 

specified conditions, forecast weight averaging can lower the mean squared 

forecast error obtained from model averaging. In addition, we show that in a 

linear and homoskedastic environment, this superior predictive ability of forecast 

weight averaging holds true irrespective whether the coefficients are tested by t 

statistic or z statistic provided the significant level is within the 10% range.  By 

theoretical proofs and simulation study, we have shown that model averaging like, 

variance model averaging, simple model averaging and standard error model 

averaging, each produces mean squared forecast error  larger than that of forecast 

weight averaging.  Finally, this result also holds true marginally when applied to 

business and economic empirical data sets, Gross Domestic Product (GDP growth 

rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.  

Key Words: model averaging, forecast weight averaging, mean squared 

forecast error. 

 

JEL Classification: C 530 

 

1. INTRODUCTION 
Forecasting has a long history. Accurate forecasting plays a very important 

role in almost every sector of life especially in decision making. In the financial 

sector, accurate forecasts can result in big jump in profit. Standard forecasting is 

usually based on well specified models like the linear regression models. But one 

problem arises from this type of models is  how to identify the well specified 
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model out of so many possible models which can be constructed from the same set 

of regressors. We usually use model selection procedure to overcome this problem. 

Model selection has been around for a long time.  Many different methods of 

model selection has been proposed and advocated and each one of them is based on 

distinctive estimation criteria. Some of the well known criteria are Akaike 

information criterion (AIC) (Akaike, 1973), Mallows criterion (MC) (Mallows, 

1973), Bayesian information criterion (BIC) (Schwarz, 1978), the focused 

information criterion (Claeskens and Hjort, 2003) and many others.  

 It has long been suspected that model selection procedure has flaws which 

will influence the final inference. This has motivated many researchers to look into 

how model selection can affect inferences. Potscher (1991) showed that AIC model 

selection method results in distorted inference. Buhlmann (1999) examined and 

presented conditions under which post-model-selection (PMS) estimators are 

mostly adaptive. Then Leeb and Potscher (2003, 2005, 2006) studied the 

unconditional and conditional distribution of PMS estimators and found that they 

cannot be uniformly estimated. This literature suggests that model selection may 

not the best procedure for constructing the best model for forecasting. The main 

reason is the existence of model selection uncertainty. 

 Model averaging is an alternative method to model selection and its 

advantages are that it can reduce estimation variance and at the same time control 

omitted variable bias. There is a large literature on model averaging notably 

Bayesian model averaging (BMA) and an ever growing frequentist literature. 

Draper (1995) and Raftery, et al. (1997) made seminal contributions to BMA. In 

the frequentist literature, Buckland, et al. (1997), and Burnham and Anderson 

(2002) suggested exponential AIC weights for model averaging. Hansen (2007) 

introduced the idea of model averaging by using weights which minimize the 

Mallows criterion.   

 Each of the model averaging methods mentioned above has its own 

shortcoming. No one of them can claim to be the best.  This fact motivates us to 

think of averaging the forecast weights from different methods, see Yip, et al. 

(2011). We continue with Yip’s work and investigate whether their forecast 

weights averaging procedure can be applied more accurately to variance model 

averaging (VMA) or standard error model averaging (EMA) other than simple 

model averaging (SMA) and BMA.  We would also like to find out whether the 

behavior of forecast weight averaging (FWA) estimator remain unchanged if t 

statistical test is conducted instead of z test for the case of linear combination of 

two linear models in a homoskedastic environment.   

 The rest of the paper is organized as follows: Section 2 introduces model 

averaging procedure notably model averaging of two simplest linear models. 

Section 3 reviews existing methods of selection of forecast weights. Section 4 

presents forecast weight averaging (FWA) while Section 5 presents and discusses 

the results of a simulation study. Section 6 discusses three empirical examples of 

how model selection, averaging and forecast weights averaging are applied in an 

economic environment. Section 7 discusses the theoretical framework of the FWA 

procedure. Section 8 concludes this paper. 
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2. THE MODEL AVERAGING PROCEDURE 

Suppose that we have two models, 1M  and 2M . Let 1f  and 2f  be the 

forecasts obtained by using 1M  and 2M  respectively. 

If cf  represents the combined or averaging forecasts, 1w  and 2w  are the 

forecast weights respectively for 1f  and 2f , then we have model averaging 

forecasts or combined forecasts be given by 

 2211 fwfwfc +=                                          (1) 

and  

121 =+ ww . 

The values of 1w  and 2w  are constrained so that its sum is equal to unity in order 

that each forecast contributes the correct amount of share to the forecast 

combination. If 1f  and 2f  are unbiased, then it can be shown that cf  is indeed 

unbiased. With cf unbiased, then mean squared forecast error (MSFE) of cf  is 

equivalent to )( ceVar , where 1,eec  and 2e  are respectively the combined forecast 

error, forecast errors of models 1 and 2. We are mainly interested in MSFE.  

Following Equation (1), we have an equivalent equation relating 1,eec  and 2e , that 

is   

2211 ewewec += .                                                                    (2) 

Its variance is given by  

),(),()()()( 121221212
2
21

2
1 eeCovwweeCovwweVarweVarweVar c +++= .                 (3) 

There are two covariance term connecting the two forecast errors in Equation (3). 

This suggests that a matrix approach is necessary to show that the forecast 

combination variance is no greater than either each one of the individual forecast 

variances.  

Let covariance matrix, V  is given by 









=

2221

1211

σσ
σσ

V                                                                 (4) 

where 11σ  and 22σ are respectively denote the variance for the forecast errors 1e  

and 2e , 12σ and 21σ  are covariance of forecast errors 1e  and 2e . 

Consider the combined forecast error defined in Equation (2), we can 

rewrite the combined forecast error variance in Equation (3) as follows: 

∑ ∑=Σ
= =

2

1

2

1i j
ijjic ww σ .                                                                        (5) 

We would have to search for a set of weights which minimizes Equation (5) 

subjected to the condition that 121 =+ ww . By using Lagrange undetermined 

multiplier technique, it can show that   

minminmin][ Vww
T

c =Σ  
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   1
2

1
2 )( −−= IVI
T                                                                  (6) 

where )11(2 =TI .   

From Equation (6), we obtain  

2
122211

122211

min

2

][

1

σσσ
σσσ

−
−+

=
Σc

.                           (7) 

After rearranging, Equation (7) becomes 

0
)(

)(1

][

1
2
12221111

2
1211

11min

≥
−

−
=−

Σ σσσσ
σσ

σc

 ,                                        (8) 

and 

0
)(

)(1

][

1
2
12221122

2
1222

22min

≥
−

−
=−

Σ σσσσ
σσ

σc

 .                    (9) 

Equations (8) and (9) imply that the combined forecast variance is less than the 

minimum of the two individual forecast variances, that is 

),min(][ 2211min σσ<Σc .                                                       (10) 

Equation (10) shows that the forecast error variance is always smaller than each of 

the individual forecast error. This verification is based on fact that iiσ  is constant 

throughout the data series, but this is rarely the case in practice because iiσ  will 

change slightly at least from one part of the series to the next. Moreover Equation 

(10) is designed for population setting and we deal with samples most of the time.  

Thus Equation (10) may not hold all the times in practice.  

 

2.1 MODEL AVERAGING OF TWO SIMPLEST LINEAR  

             REGRESSION MODELS 

Our approach is similar to that of Buckland (1997) and Yip et al. 

(2011).We focus our discussion and analysis on two simplest linear regression 

models, 1M  and 2M . However, it must be noted that the method discussed in this 

section can be applied equally well for averaging multiple models. We combine 

these two simplest linear regression models for forecasting the conditional means 

by using model averaging technique. Then we replace the forecast weights by 

forecast weights averaging from three different methods of assigning forecast 

weights. There are two risk measures, mean squared error (MSE) and MSFE to 

measure forecasting ability of any model. However, since out of sample 

forecasting focus primarily on MSFE. We use mainly MSFE to verify that forecast 

weights averaging technique is indeed can improve forecast accuracy. Our two 

simplest Models 1M  and 2M  are nested strongly nested. This is because they 

belong to the same regression family and it is necessary for application of the 

methods discussed in this paper. Extending the methods to allow for non-nested 

models is highly desirable.   

 

METHODOLOGY:    
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Let the two models be denoted by 1M  and 2M . These two models are 

shown in Equations (11) and (12).                                                                

1M :  10 uy += β                              (11) 

2M :  210 uxy ++= ββ                                                               (12)                                               

We make the following assumptions: 

a) The two models are linear with constant variance. 

b) The error terms 1u  and 2u  follow normal distribution with zero mean, 

),0(~ 2
11 σNu  and ),0(~ 2

22 σNu .  

c) x  is a realization from an independent and identically distributed (iid)  with 

mean zero. This assumption will ensure that  ∑ =
=

n

i
ix

1

0  and that x  can be taken 

as a constant. We let the conditional means for 1M  and 2M  be represented by 

1θ  and 2θ  respectively. With that, we have the followings:    

1M : 01 βθ =  ; 01
ˆˆ)( βθ ==yE               (13)

                       

2M : x102 ββθ += ;    xyE 102
ˆˆˆ)( ββθ +==                                                     (14) 

 

We would like to forecast x10 ββθ +=  he future conditional mean by 

assigning weights for 1θ  and 2θ . Thus we have the following equation 

  2211
ˆˆˆ θθθ ww +=                                                                            (15) 

where 1w  and 2w are the forecast weights under a constrained condition that  

  121 =+ ww .                                                   (16) 

By substituting Equations (13) and (14) into Equation (15), we obtain the 

following: 

xw 120
ˆˆˆ ββθ += .                                                                          (17) 

The above derivation for two models can always be generalized to 

accommodate combination of multiple models.  

 

2.1.1 T STATISTIC VERSUS Z STATISTIC 

Yip, et al. (2011) has used a similar approach for deriving Equation (17). 

However, they use z statistic to test for the validity of the coefficient β . Z statistic 
is not a pivotal statistic because it depends on the nuisance parameter x . We need 

to use t statistic for the test, but t statistic has a degree of freedom which makes it 

not so independent after all. We propose to study the behavior of the t statistical 

test in the vicinity that it can be approximated well by z statistic. This is our first 

contribution in this paper. This section deals mainly the theoretical aspect of this 

asymptotic behavior of the estimator.  
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 Equation (17) is a linear regression, so we have to test whether the 

parameters 0=β  against 0≠β  by using t  test where ][ 10 βββ =T .   This is 

usually done by using the estimated 1β̂  from the sample for the test. Thus we have: 

( ) ( )[ ]vv tvItvI ,11,1 )/ˆ()/ˆ(
11 αβαβ ββ −>+<   is the condition for 1β̂  to be valid so 

that 1β  is nonzero and να ,t  is the %100)1( α−  point of the −t distribution with 

ν  degrees of freedom . With that, we have our estimated linear equation to be 
given by 

( ) ( )[ ]vv tvItvIxw ,11,1120 )/ˆ()/ˆ(ˆˆˆ
11 αβαβ ββββθ −>+<+= .                  (18) 

We let ( ) ( )[ ]vv tvItvIJ ,11,1 )/ˆ()/ˆ(
11 αβαβ ββ −>+<=  so that Equation (18) can 

be written as      

xJw 120
ˆˆˆ ββθ += .              (19) 

We need to make sure that the two estimated beta, ( 0β  and 1β ) are 
independent of each other. This is because uncorrelated/independent regressors is 

the basic condition for linear regression to be valid. To satisfy this requirement, we 

transform the t statistic into z statistic by defining a local to zero framework which 

has a parameter c which we name as conversion parameter.  We investigate the 

asymptotic behavior of the approximated t statistical test and see how it can affect 

our final inference. We usually choose c  to be small and n  large so that t statistic 

can be approximated accurately by z statistic. However, in our experiment, we vary 

the values of c  from -50 to 50 and fix the value of n  as 100 for the purpose of 

finding at what significant level that z and t test will produce the same result in our 

analysis, that is 

zncv += //ˆ
11 ββ                                                   (20) 

where 
1

/)ˆ( 11 βββ vz −=  and the value of c  is allowed to vary from -50 to 50,     

-40 to 40, -30 to 30, -20 to 20, -10 to 10 and -5 to 5 as follows: 

 0,10,550,40,30,2afor   ),( =−= aac    and 100→n                                (21) 

The ratio of c  to n  is included in equation for the purpose of adjusting the t 

statistic to z statistic. In addition we need 
1β
v  to be constant, but it depends on 

the values of x . We transform 
1β
v  as follows: 

221
σαβ =v                                                            (22) 

where 2
2σ  is the homoskedastic variance of the regression error and 2α  is the 

second diagonal element of the inverse matrix of 1)( −
XX
T which is given as 

follows: 









=−

2
2

2
11)(

α
α
b

aT
XX .                                                              (23) 
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By using Equations (20) and (22), we obtain:  

[ ]znc += /ˆ
221 σαβ .                      (24) 

 

After substituting Equation (24) into Equation (19), we obtain  

 

[ ]Jzncxw ++= /ˆˆ
2220 σαβθ .                                                (25)

      
By substituting Equation (19) into Equation (25), we obtain Equation (26) linking 

1β  to c , n  and 2σ , that is 

  nc /)( 221 σαβ = .                                                     (26)  

Using  x10 ββθ +=  , Equations (25) and (26), we obtain the following mean bias, 

variance bias and mean squared forecast error or bias. We omit the condition J  for 

the validity of 1β , for clarity. These bias, variance and forecast error are shown as 
follows:  

nwcxE /)1()ˆ( 222 −=− σαθθ ,                                                    (27) 

2
2

2
2

2
2

22
1 /)ˆ()ˆ( σασθθθ wxnVarVar +==− ,                                  (28) 

and 

[ ]22
2

22
2

2
2

2
2

22
1 /)1(/)ˆMSFE( nwcwxn −++= σασθ .                    (29)       

where n/21σ  is the variance for the intercept term 0β̂  Note that in the derivation of 

Equation (17), we have assumed that 0β̂  is the same for Equations (13) and (14) 

which is true since we have assumed that x  follows an iid with mean zero and that 

it is a realization of the distribution.  

 

3 FORECAST WEIGHTS SELECTION REVIEW  

Model averaging is used to construct forecasting model combination for 

performing out of sample forecasting. Forecast combination has been introduced in 

the literature long time ago. The idea was introduced by Bates and Granger (1969) 

and then it was extended by Granger and Ramanathan (1984). The literature is 

large and some excellent reviews include Granger (1989), Diebold and Lopez 

(1996), Hendry and Clements (2002), Timmermann (2006) and Stock and Watson 

(2005). As a whole, there is a broad consensus that forecast combination can 

improve forecast accuracy. However, there is no consensus as to how to construct 

forecast weights for the forecast model combination. This motivates us to follow 

Yip, et al. (2011) to experiment on averaging different forecast weights, which is 

our second contribution in this paper. We shall now review some forecasting 

combination literature, notably seminal paper by Bates and Granger (1969) and the 

recent one, simple model averaging by Stock and Watson (2004). 

Bates and Granger (1969) have elaborately identified the conditions for 

combination of forecasts. Among the five methods for forecasting combination 

presented in the paper, the use of forecasts variance of errors as forecast weights is 
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good as variance of errors is a simple way to illustrate the mechanism of Akaike 

Information Criterion.  

We shall use this proportion of variance of errors as our first method to 

generate forecast weights. We name this method as variance error model averaging 

(VMA).  Besides VMA, we also use the ratio of standard errors of the two models 

1M  and 2M  to construct forecast weights. We name this method as EMA as 

defined in the abstract.  This EMA is our third method of generate forecast 

weights.  

 The recent forecasting literature focused on forecasts based on Bayesian 

model averaging (BMA) and simple model averaging (SMA). Wright (2003a,b), 

Stock and Watson (2004) have demonstrated that using SMA forecast 

combination, forecast accuracy not only improve tremendously but also change 

little over time. In particular simple model averaging (equal weights) and Bayesian 

model averaging have demonstrated big success in forecasting. We also have 

Hansen (2008) forecast combination model based on using forecast weights 

selected by the Mallows model averaging criterion. Our second method of 

selecting forecast weights is the SMA using equal weights. This amounts to saying 

that we give a simple average of the total number of models M , involved as 

weight to each forecast from different models. That is each forecast weight is 

effectively M/1 . This method of giving weights to each forecast works 

intriguingly well not only in the real term but also it is stable over time. However, 

Stock and Watson (2004) do not offer a definitive explanation for the excellent 

performance of SMA. 

We choose SMA as our second method for selecting weights mainly 

because it performs well in forecasting as illustrated by Stock and Watson (2004) 

‘s experiment. Moreover we think that all data especially economic data are 

generated by human activities. In general term, most of us prefer moderation in 

most aspects of life and this drives the data generating process towards the central 

mean. Thus we have three different methods, one of which is old but reliable, 

second is the most recent successful one in the forecasting literature and the third is 

ratio of the standard errors of both models. Since we have advocated considerable 

attention to the method of averaging, it would be only logical to assume that 

forecast weights from different methods can also be estimated by some sort of 

averaging. It is this idea of averaging the forecast weights from different methods 

that motivates us to continue work done by Yip, et al. (2011) who has done 

forecast weight averaging for SMA and BMA (Bayesian weight averaging). 

Instead we consider FWA with weights as weighted averaging of, VMA, SMA and 

EMA.  

 

3.1 VMA MODEL AVERAGING  

We impose the following conditions on our two model averaging models. 

They are: 

a. The individual sets of forecasts are made unbiased. This is because an unbiased 

set of forecast if combine with a biased set of forecast will most likely produce 

mean squared error larger than the unbiased forecasts.  
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b. The forecast combination produces the lowest mean squared forecast error. 

c. The performance of the forecast combination is stationary that is stable over 

time. 

d. As the number of forecasts increases, the average forecast weight should 

approach the optimum value.  

e. The weights should vary slightly about the optimum value. 

For VMA model averaging, we select weights so that the forecast error 

variance for the combined models is minimized.  

 

3.1.1 SELECTION OF WEIGHTS FOR VMA 
We select the weights under the assumption of homoskedastic variance 

that is the variance is constant for a particular model. Suppose that the forecast 

error variances of the models 1M and 2M  are denoted by 2
1σ  and 2

2σ  respectively. 

Then the two VMA weights for the combined forecast should be: 

  ( )222
1

2
11 / σσσ +=Vw ,   

and 

( )222
1

2
22 / σσσ +=Vw .              (30) 

 We have chosen that the forecast weight is directly proportional to the 

respective forecast error variance because of two reasons. One of them is error 

variance of regression is the main building block for Akaike Information Criterion 

and the Bayesian Information Criterion. This implies that error variance plays a 

very important role on the suitability of the model. The other reason is that we have 

assumed that the forecast error variance is constant for a particular model. Thus in 

effect, Equation (30) is almost equivalent to a scalar weighted average. Since 

different model has different forecast error variance and we expect them to behave 

randomly. We treat this forecast weights Vw  as a random variable in general.  

The MSFE for VMA method of constructing forecast weights is given by      

[ ] 22222
2

2
2

22
1V )1/()/(1/)ˆMSFE( uncuxn +++= σασθ           (31) 

where 21 /σσ=u .                            

 

3.2 SELECTION OF WEIGHTS FOR SMA 

For SMA model averaging, we have a number of choices notably medians, 

trimmed mean and simple mean. We choose simple mean. This means that if we 

have M  models for averaging, the chosen simple weights are equal to M/1 . This 

simple mean or central mean is chosen because of two reasons. One of which is 

that we believe most data sets mirror the way human being behave since the data 

are mostly generated by human activity. Most human being are moderate in 

thinking and they have central tendency. Most of the data carries this piece of 

information.  So when we model data, we should look into its central tendency 

behavior first that is to say, we put focus on its mean. The second reason is that 

Stock and Watson (2004) have shown that selecting equal weights as forecast 
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weights can prove to be very successful in real data out of sample forecasting. 

Thus, we have for two models, 2=M : 

 2/121 == SS ww .              (32) 

By substituting 2/12 =Sw  in Equation (29), The MSFE for SMA method 

is given by 

  [ ] 4/)/(1/)ˆMSFE( 22
2

2
2

22
1S ncxn ++= σασθ .                    (33) 

 

3.3 SELECTION WEIGHTS FOR EMA  

The forecast weights are the ratio of the respective standard deviation. The 

two forecast weights for 2=M  are given below: 

( )2111 / σσσ +=Ew ,              (34) 

and 

( )2122 / σσσ +=Ew .              (35)                                                                              

The MSFE for EMA method is then given by  

[ ] 222
2

2
2

22
1E )1/()/(1/)ˆMSFE( uncuxn +++= σασθ .                  (36) 

 

4. FORECAST WEIGHT AVERAGING (FWA)  

The formulation of forecast weight averaging would be defined in the 

same way as model averaging except that we are considering forecast weights from 

different methods. The rationale underlying this formulation is that forecast 

weights from each method would contain certain important information about the 

forecast not available in the other method of constructing forecast weight. We 

discuss the general formulation initially and only then, we discuss in detail how to 

combine forecast weights from two and three specific methods of constructing 

forecast weights. It must be noted here that FWA depends on the suitability of the 

model averaging procedure. Let say we have three methods, BA,  and C  of 

assigning forecast weights, denoted by Aw , Bw  and Cw . Each method is used to 

combine forecasts from two models only. Since we are combining weights from 

three methods only, we would have the following information. 

 121 =+ AA ww ,               (37) 

121 =+ BB ww ,                (38) 

and  

121 =+ CC ww .                           (39)    

                                                    

 We select equal weight method to assign weight to each forecast weight 

BA ww ,  and Cw . We shall explain the reason for this selection latter.  Thus we have 

the following equations 

  3/)( 1111 CBACa wwww ++=              (40) 

and  

  3/)( 2222 CBACa wwww ++=  .                        (41) 
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Note that 121 =+ CaCa ww , as required by our assumption. As 1Caw  and 2Caw  are 

difficult to calculate if BMA and other criterions are used, most of the time we 

calculate one of them only for forecasting. This can be done by using the restricted 

sum of 1Caw  and 2Caw  and our final formula would be Equation (43). 

  2211 fwfwf CaCaCa +=               (42) 

  )( 1221 ffwff CaCa −+=              (43) 

We propose to combine the three weights Vw , Sw  and Ew  to form 

forecast weight averaging (FWA). It is logical to think that averaging out the 

averages would give us a much better measure to smoothen the total forecast 

fluctuation. Thus we would be able to obtain more accuracy in forecasting if we 

average out forecast weights from different models combination. We select only 

two models for FWA. However, the method describes in this paper can be 

generalized to accommodate M models combination.  

We have to choose weights Caw  by combination averaging of the VMA 

weights Vw  , SMA weights Sw  and EMA weights Ew . A linear combination of all 

these three variables is given in Equation (44), that is 

 [ ] 3/)/(2/1)/( 212
2
2

2
1

2
22 σσσσσσ ++++=Caw            (44) 

Substituting Equation (44) into Equation (43) will give us the following 

combination forecast. 

  [ ] 3/)()/(2/1)/( 12212
2
2

2
1

2
21 ffffCa −+++++= σσσσσσ         (45) 

By substituting Equation (44) into Equation (29), we would obtain 

Equation (46) which is the MSFE for FWA forecast weight averaging.  
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1
)ˆMSFE(

uun

c

uu
x

n
σα

σ
θ

          (46) 

Thus by comparing Equations (31), (33), (36) and (46), we will be able to ascertain 

whether FWA is a better forecasting model than VMA, SMA and EMA. We use 

two different methods for this comparison. First, we use simulation and then we 

use mathematical verification of the simulation result. 

  

5. A SIMULATION STUDY 

A simulation study is carried out to assess the performance of all 

forecasting methods by computing their MSFE as illustrated by Equations (31), 

(33), (36) and (46). First, we generate data with sample size of 99=n  from model 

1 and model 2 as given below: 

Model  1  11 uy += ,               )2,0(~1 Nu                                                  (47) 

Model  2  231 uxy ++= ,      )2,0(~2 Nu
                                                

 (48) 

where 1u  and 2u  are independent. We next calculate the values of MSFE for each 

method for given values of 20=x  and c . Finally, the above steps repeat for 
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2000=N  replications and obtain the average values of MSFE for all methods. 

Figures 1 illustrates the relative performance of forecasting ability of all the four 

models as the values of c  vary.  

 
Figure 1: Comparison of MSFE when   Figure 2: Comparison of MSFE when 

20=x  for range of c  from -5 to 5          20=x  for range of c  from -10 to 10 

 
Figure 3: Comparison of MSFE when      Figure 4: Comparison of MSFE when 

20=x  for range of c  from -20 to 20          20=x  for range of c  from -30 to 

30 

    
Figure 5: Comparison of MSFE when       Figure 6: Comparison of MSFE when 

20=x  for range of c  from -40 to 40           20=x  for range of c  from -50 to 50 
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Figures 1 to 6 show the simulation results with different range of values of 

c  such that Figure 1 has the smallest range value of  c (-5 to +5) and Figure 6 has 

the largest range value of c  (-50 to +50). Figures 1 to 6 clearly depict the values of 

MSFE for all the estimators FWA, VMA, EMA and SMA and that they are 

independent of the values of c  only  for a small range of the values of c  ranging 

from -5 to +5 (Figure 1) and -10 to +10 (Figure 2). Nevertheless, from the values 

of c  more than 10± , the MSFE appears to be positively correlated with the value 

of c  (see Figure 6). These results imply that it is only within the range of values of 

c  from -10 to +10, that t and z tests can produce similar results within some 

specific range of the significant level.  

 Relating to the relative predictive performance of the FWA, VMA, EMA 

and SMA, from Figures 1 to 6, it is found that the FWA has clearly the lowest 

value of MSFE than VMA, EMA and SMA, across the various range value of c . 

Whereas, the VMA, EMA and SMA have almost similar values of MSFE. 

Quantitatively, from Figure 6, it appears that for the range value of c  from -10 to 

+10, FWA is able to reduce the MSFE of VMA, EMA or SMA by more than 3%. 

This percentage is obtained by visually examining the graph in Figure 6 whereby it 

is clear that MSFE decreases from 0.0455 to 0.0445. However, the better predictive 

performance of FWA is reducing with the increasing value of c  (in absolute term).  

Figure 6 indicates that as the value of c  increases, for instance at value of c  at 50 

(or -50), FWA is able to reduce the MSFE of VMA, EMA or SMA by only around 

1 %.  

     In short, the simulation results suggest that FWA has better predictive 

performance than VMA, EMA and SMA. However, this better predictive 

performance is deteriorating with increase in the value of c , the local to zero 

parameter. In the following section, we will present the empirical results. 

 

6. EMPIRICAL RESULTS 

We have conducted three real life business and economic examples of 

Malaysian macroeconomic series. Firstly, the Gross Domestic Product (GDP) with 

net export (NEX) as regressor. Secondly, the Consumer Price Index (CPI) with 

employment (EMP) as regressor. Lastly, the Average Lending Rate (ALR) with 

money supply (MS) as regressor. The data are obtained from the database of IFS 

(International Financial Statistics) in quarterly from Q1 1988 to Q3 2006 (real 

GDP), Q1 1999 to Q3 2006 (NEX), Q1 1957 to Q3 2006 (CPI), Q1 1998 to Q3 

2006 (EMP), Q4 1986 to Q3 2006 (ALR), and Q4 1969 to Q3 2006 (MS). The last 

ten observations (Q1 2004 to Q3 2006) are used for calculation of MSFE.  

For each example, we fit the data with the models given by Equations (11) 

and (12). For instance, the first example of GDP, we estimate the following two 

models: 

tt uyM += 01 : β                                    

ttt uxyM ++= 102 : ββ            



 

 

 

 

Yip Chee-Yin, Ng Kok-Haur, Lim Hock-Eam 

_____________________________________________________________ 

  

where ty  denotes respectively GDP and tx  stands for NEX. We use these models, 

1M  and 2M  again for the 2nd and 3rd real life examples. 

Before we conduct model averaging and forecast weight averaging, we 

check the BIC values for 1M  and 2M . By applying the BIC information criterion, 

model with the smallest BIC value is the more stable than the other models. With 

this consideration, we conclude that 2M  is more stable than 1M  because it returns 

a smallest BIC value. To confirm that 2M  is the more stable model, we perform 

the perturbation instability in estimation (PIE) test. Model with the smallest PIE is 

always more stable than model with larger PIE. We obtained PIE values for models 

1M  and 2M  
as shown in Table 1. Table 1 shows clearly that GDP and CPI have 

lower PIE values for Model 2 than Model 1. As for ALR, PIE of Model 2 is almost 

similar to Model 1. As a whole, PIE in Table 1 confirms that Model 2 is more 

stable for GDP, CPI and ALR because the smaller the PIE, the more stable the 

model. 

 

                   Table 1: PIE values for 1M  and 2M  

Data Model 

1M  2M  

GDP 

CPI 

ALR 

1.4305 

0.4906 

0.1196 

1.2355 

0.3093 

0.1330 

 

Table 2: Comparison of MSFE with different methods of model averaging 

 

Method MSFE 

GDP CPI ALR 

2M  

VMA 

SMA 

EMA 

FWA 

1M  

210 

307 

937 

499 

551 

2194 

6 

7 

680 

24 

118 

2569 

0.28 

1.00 

1.02 

1.40 

1.41 

6.48 

 

Table 2 compares the results of MSFE for these three real life examples 

based on five different models, that are 2M , VMA, SMA EMA, FWA and 1M .   

Table 2 clearly illustrates that the model 2M  has is the lowest MSFE and model 

1M   has the highest MSFE across the three real life examples. Since the real GDP, 

CPI and ALR series of Malaysia are clearly not a mean-reverted series; the 1M  

which used unconditional mean for forecasting is expected to have the highest 

possible MSFE suggesting that it is the worst model. On the contrary, due to the 

open economy of Malaysia, the net export is a significant predictor of real GDP. 
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By economic theories, the employment is a significant predictor of CPI (Phillip 

curve); the money supply is a significant predictor of ALR (money market 

equilibrium). Thus, the model 2M  is expected to have significantly lower value of 

MSFE than model 1M  which means that model 2M  is the best model relatively 

speaking. As such, the MSFE of the combined forecast of models 1M  and 2M  

should fall between the MSFE of models 1M  and 2M . The one with MSFE closest 

to 2M  is expected to have the best predictive ability. 

Figures 7, 8 and 9 depict the MSFEs of three real life examples for all 

models discussed. Across the three real life examples, it is found that SMA has the 

lowest predictive performance (its MSFE is the closest to MSFE of model 1M ). 

This is due to its combined forecast weight which split equally between 1M  and 

2M , regardless the fact that the forecast of 2M  should be assigned higher weight 

than 1M .  

 

 
 

Figure 7: MSFE for Real GDP growth   Figure 8: MSFE for Consumer Price  

                                                                 Index 

 

 
      

Figure 9: MSFE for Average Lending Rate 
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The VMA has the highest predictive performance as its MSFE is the 

nearest to 2M . This is due to its combined forecast weight which assign the 

heaviest weight to 2M  (the best model) and the lowest weight to 1M  (the worst 

model). The FWA is found to have not the lowest MSFE. This finding appears 

inconsistent with the simulation study in Section 5. However, as explained early 

about PIE stability test, 2M  is the preferred model because its PIE value is 0.3093 

and 0.1330 for CPI and ALR, which is well below the mark of 0.5 where model 

averaging is preferable (see Yuan and Yang (2005)).  Intuitively if model 

averaging is not the best procedure to choose for forecasting purpose as in this 

case, we expect FWA cannot be the optimal forecasting model as well because 

FWA is based primarily on model averaging. It must also be noted that these real 

life data do not satisfy the condition that the sum of the regressor values must be 

zero. This is usually the case in most practical situation. Therefore 0β  in model  

1M  and 2M  may not be the same. 

 

7. MATHEMATICAL VERIFICATION OF THE SUPERIORITY OF  

             FWA 

Since the term n/21σ  and 2
2

2
2

2 σαx  are the same for VMA, SMA, EMA and FWA, 

we compare the rest of the terms in Equations (31), (33), (36) and (46). We 

compare FWA with each of VMA, SMA and EMA.  

 

7.1 FWA VERSUS VMA 
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When the value of u ranges from 1 to 2 by following the definition 21 /σσ=u , 

which is more than 1 most of the time, FWA will returns a lower MSFE than 

VMA. 

 

7.2 FWA VERSUS SMA 

The comparing factor for SMA and FWA are: 
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It is obvious that 4/19/1 < ,  ( ) 1)1/(12/1)1/(1
22 <++++ uu  and that 

( ){ } 12)1/(12/1)1/(1
22 ≈−++++ uu . Thus FWA returns a lower MSFE than SMA.  

By using a similar type of proof, we can also show that FWA can return a 

lower MSFE than EMA.  
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8. CONCLUSION 

From the simulation result it is obvious that FWA will return a smaller 

value of MSFE than VMA, EMA or SMA. FWA is effective in forecasting mainly 

because it averages out information from different models of constructing forecast 

weights. This result is confirmed by mathematical verification. However, it is 

assumed that each variance is constant which is difficult to obtain in practice even 

in the homoskedastic environment. This practical aspect of the variance reveals 

clearly in our empirical experiment results.  Empirical results suggest that the 

averaging methods are superior if and only if we have imperfect information about 

the worst and the best models. This is consistent with the theory of portfolio 

investment where the diversification of investment is preferable due to imperfect 

market information. 
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