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POLYNOMIAL CHAOS SOLUTION TO THE BLACK SCHOLES 

EQUATION WITH A RANDOM VOLATILITY 
 

 

 

Abstract. In this study, the Black Scholes equation with uncertainty in 

its volatility is considered. A numerical algorithm for option pricing 

based on the orthonormal polynomials from the Askey scheme is derived. 

Then dependence of polynomial chaos on the distribution type of the 

volatility is investigated. Numerical experiments show that when 

appropriate polynomial chaos is chosen as a basis in the random space 

for the volatility, the solution to the Black Scholes equation converges 

significantly fast. 
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1. Introduction 

 

In this paper, we study the Black-Scholes partial differential equation for the 

option price , 

 

 
 

where S is the price of the underlying asset, r is the risk-free interest rate and the 

volatility is a function of a random variable . Assuming the volatility 

as a random process, one can resolve shortcomings of the constant volatility 

assumption in the Black-Scholes model. See Hou et al. (2006) and Lewis (2000). 
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By changing the variable , the equation (1) becomes the following 

equation for , 

 

 
 

Without loss of generality v is denoted by u for notational simplicity. 

 

The solution u is a function of the deterministic variable  and the random 

variable . For instance, if  is a standard Gaussian with zero mean 

and unit standard deviation for a Brownian motion , the solution u is a 

function of x, t and the Brownian motion path  There 

has been many studies on such type of problems. The Cameron-Martin theorem 

(1947) separates deterministic and random variables of the solution for 

 by a Fourier transform with respect to the Hermite polynomials of  

(Mikulevicius (1998)), 

 

Theorem 1 (Cameron-Martin theorem). Assume that for fixed x and t, u is a 

function of the Brownian motion W on the interval [0, t] with . 

Then  has the following Wiener chaos expansion (WCE) 

 

 
 

where  denotes the set of multi-

indices for , and  is the multi-variate Hermite polynomial of 

 .  is the normalized order 

Hermite polynomial. First two statistical moments of  are given by 

 and , respectively. 

 

Due to the randomness of the solution of this type of equation, one wants to 

know statistical properties of the solution such as its first, second or higher 

moments, instead of one particular solution corresponding to a specific realization. 

Theorem 1 shows that if , statistical moments of the solution can be 

obtained from the coefficients  which implies that the stochastic equation (2) 

can be interpreted as a system of deterministic equations for 's. Cameron and 

Martin (1947) show that this Wiener chaos expansion (WCE) represents a second-

order random processes with respect to orthogonal Hermite polynomials which 

converges in the mean square sense. Ghanem and Spanos (1991, 1999) extend the 

polynomial chaos with respect to solid mechanics problems. Askey and Wilson 

(1985) consider various orthogonal polynomials and classify them. 

 

Polynomials in the Askey classification can be an orthonormal basis if the 

probability density function of an appropriately chosen random distribution is used 
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as the weight function of the inner product. For example, Jacobi polynomials are 

orthonormal if the inner product is defined in terms of the density function of the 

Beta distribution. Xiu and Karniadakis (2002) apply hypergeometric polynomial 

chaos into stochastic differential equation problems. Hou et. al. (2003, 2006) or 

Lin et. al. (2006) then extend the polynomial chaos to stochastic partial differential 

equations in fluid dynamics. But their studies are mainly focused on a randomness 

driven by a Brownian motion and their studies are limited to the effects of Hermite 

polynomial chaos. Mikulevicius and Rozovskii (1998, 2004) perform analytical 

approaches to the Wiener Chaos expansion. 

 

In this paper, we construct a numerical algorithm based on the hypergeometric 

polynomial chaos for the Black Scholes equation (1) with a random volatility. 

Inspired from the work by Hou et. al. (2006), we solve the Black Scholes partial 

differential equation when  is random and investigate the effects of the type of 

polynomial chaos. Numerical experiments in Section 4 show that given a certain 

random distribution for the volatility the option value converges substantially fast 

if the chosen Wiener-Askey chaos is orthonormal with respect to the probability 

density function. The solution to the Black Scholes equation seems to converge at 

a slower rate if the appropriate polynomial chaos is not used. 

 

This paper is organized as follows: In Section 2, we outline properties of the 

Black Scholes equations and orthogonal polynomials. The numerical scheme based 

on the polynomial chaos expansion is explained in Section 3. Numerical schemes 

introduced in Section 3 are validated in Section 4.1 using a linear advection 

equation, then they are applied to the Black Scholes equation with random 

volatility in Section 4.2. 

 

2. Black Scholes equation and polynomial chaos 
 

Black Scholes equation (1) can be solved analytically when the option is simple 

enough. For instance, the European vanilla call option has  as 

the payoff at expiry T, where S(t) is the price of the underlying asset at t and E is 

the exercise price. Then its solution is  

 

 
 

where N( ) is the N(0,1) distribution function for a standard normal random 

variable and 

 

 
 

Let  denote the solution  for the European vanilla call option with 

the emphasis on the exercise price E in order to use in Section 4.2. 
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Let  represent hypergeometric orthonormal polynomials such as 

Jacobi, Laguerre or Hermite polynomials of degree n. Polynomials  can be 

derived from  the order differentiation,  for some 

 and , with a constant of normalization  or from a generating 

function as explained in Kreyszig(1989).  are orthonormal when the inner 

product is defined by where the 

measure is expressed using a weight function , , and 

[a,b] is the corresponding support of the measure . For example, Jacobi 

polynomials  are derived by 

 

 
 

with . Setting  results in the Legendre polynomials: 

 

 
 

 are orthonormal with respect to the probability density function of the 

Beta distribution,  

where . Note also that orthogonality of  derives 

a recurrence relation, 

 

 
 

with  and , where and  are constants. For 

example, Jacobi polynomials satisfy 

 

 
 

Jacobi, Laguerre and Hermite polynomials will be used in this study and Appendix 

A summarizes the properties of Hermite and Laguerre polynomials. Table 1 

outlines the definitions of those orthogonal polynomials and corresponding 

probability density functions with respect to which those polynomials are 

orthonormal. See Szego(1939) for more properties of various orthogonal 

polynomials. 
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Table 1 : Orthogonal polynomials 

  

Polynomials 
 

Definition Pdf  with respect to which 

 are orthonormal 

Jacobi  

 

 

Laguerre   

  
Hermite  

  
 

 

3. Numerical formulation 

 

We represent the solution u of the Black Scholes equation (1) with random 

volatility  by  

 

 , 

 

where   are orthonormal polynomials such as 

normalized Jacobi polynomials. From , this  can 

be simply written as 

 

 
 

where  denotes the polynomial chaos of order n in the n 

independent and identically distributed random variables  For 

notational simplicity, we follow the notation of Xiu and Karniadakis (2002). Then 

(5) can be rewritten as 

 

 
 

where there is a one-to-one correspondence between the functions 

 in (5) and  in (6) and also between and . When 

(6) is used, (1) can be written as 
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where  and  . Since 's are not dependent on 

x or ,  

 

 
 

Since 's are an orthonormal basis,  can be written in terms of 's, 

 

 
 

where . Then the Black 

Scholes equation can be written as 

 

 
 

Since 's are orthonormal, we derive an infinite system of 's , 

 

 
 

When this infinite system is truncated into a finite dimension, 
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we obtain the algorithm for the  order polynomial chaos, 

 

 
 

Under simplifying assumptions, we can derive an error estimate in the Appendix B. 

 

 
 

We are working on the analytical error analysis above to eliminate those 

simplifying assumptions. It should be noted that the polynomial chaos expansion 

derives a system of deterministic equations, whose solution determines statistical 

moments of the solution of (1). Since the resultant system is deterministic, it needs 

be solved only once, and thus the computational loads will be reduced. 

 

Since the Black Scholes partial differential equation we consider in Section 4 

require very high order of accuracy, the fourth order Runge Kutta method is used 

for temporal discretization in this study and spectral method in Trefethen (2000) is 

used for the spatial differentiation. From (7), 

 
 

and by taking the Fourier transform we obtain 

 

 
 

The Runge Kutta method of order 4 for the Black Scholes equation based on the 

spectral method and the polynomial chaos expansion is as follows: 

 

Step 1. Compute  at  for each  

Step 2. Set  . 

Step 3. Set . 

Step 4. Set . 

Step 5. Set . 

Step 6. Update  at  by  

 
where  is the time step in . 
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4. Numerical results 

 

Numerical schemes introduced in Section 3 are validated in Section 4.1 using a 

simple linear advection equation problem, then the schemes are applied to the 

Black Scholes equation in Section 4.2. In each section, it is shown that the 

polynomial chaos expansion converges very fast if the solution is expanded in 

terms of some appropriate polynomials, that is in terms of those polynomials, 

which are orthonormal with respect to the probability density function of the 

random variable. Then by observing the behaviors of Jacobi, Laguerre, and 

Hermite polynomial chaos expansions, it is shown that given a random variable 

following a certain random distribution, if the polynomial chaos is not chosen 

properly the convergence rate may be slow. 

 

When  represents the mean or variance of the random solution, if 

 is a numerical approximation to the function , we use the  

error in this study defined by 

 
where  is the number of points in x. 

 

4.1. Stochastic linear advection equation 

 

Let us consider a following linear advection equation 

 

 
 

with the initial condition and a periodic boundary condition. The 

exact solution is . Let us assume that k is a random 

variable. Using the polynomial chaos expansion (8) for  and 

, the advection equation (11) becomes 

 

 
 

Since  are orthonormal, we obtain a system of  equations, 

 

 
 

Equation (12) is solved using the Runge Kutta method and the spectral method 
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as explained in Section 3. 

 

Let us first assume that k is a Beta random variable with the probability density 

function  Section 2 

suggests that Jacobi polynomials are optimal for the Beta distribution. Figure 1 

(Left) represents a semi-log plot of the errors of mean and variance for a Beta 

random variable in terms of  when  The figure shows that those 

mean and variance converge at an exponential rate as the length  of the 

expansion increases when the Jacobi polynomial chaos is used as a basis. 

 

 
Figure 1: Errors of mean and variance at  (Left) when the Jacobi 

polynomial chaos is used for the Beta forcing and (Right) when the Laguerre 

polynomial chaos is used for the Gamma forcing. 

 

 

In case of the Gamma distribution with a parameter , the probability density 

function is  and the Laguerre polynomial 

chaos from the Askey polynomial chaos family is orthonormal with respect to 

. Figure 1 (Right) shows the exponential convergence of the Laguerre 

polynomial chaos for the mean and variance when follows the Gamma 

distribution with  and it corroborates the fact that a proper choice of the 

polynomial basis results in significantly fast convergence. 

 

In order to validate the importance of the proper selection of the polynomial 

chaos, let us consider the situation when  for the polynomial basis  and 

 in the equation belong to two different probability spaces  with 

different event spaces , algebras  and probability measures  That is,  

follows a certain random distribution and the polynomial basis  is not 

orthonormal with respect to the probability density function of  as the weight 

function of the inner product for . For example,  follows the Beta 

distribution and  can be Laguerre polynomials. Let  and  be the 

probability density functions of  and , respectively, and let  and  be their 

distribution functions. When  is being computed,  and  
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may not have the same support. Then we need to change the measures similarly to 

the way in Xiu and Karniadakis (2002). Let us first define a uniformly distributed 

random variable  such that  If  and  are 

defined by  and , 

. Then we can estimate the 

probability density function of  using .  will be represented in the 

form of . From the transformation of variables, 

, the probability density functions of  of different 

orders are approximated by . Similar procedures will be performed 

for (1) in Section 4.2. 

 

 
Figure 2: Convergence from the Hermite, Laguerre and Jacobi polynomial 

chaos for (Left) mean and (Right) variance when  follows the Beta 

distribution 
 

Figure 2 (Left) compares the convergences of the mean for (11) from the Hermite 

(star), Laguerre (square) and Jacobi (filled circle) polynomial expansions when  

follows the Beta distribution. Figure 2 (Right) compares the convergence of the 

variance. The figures show that when the Hermite or Laguerre polynomials are 

used as a basis for the Beta distribution, the error still decreases but the 

convergence using the Jacobi polynomials is substantially faster than those using 

the other polynomials.  

 

4.2. Black Scholes equations 

 

Let us solve the Black Scholes equation (1) where the volatility  is random. 

For the numerical experiments, we consider the butterfly-spread option, that is, for 

the same asset and expiry date, we hold a European call option with exercise price 

 and another with exercise price  and write two calls with exercise price 

.  Figure 3 shows its payoff diagram at expiry. 
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Figure 3: The payoff of the butterfly spread call option at expiry 

 

Given the price  of the European vanilla call option with the exercise 

price  in Section 2, the exact price of the butterfly-spread option above is 

 

 
 

 and  are used in the numerical experiments with time to 

maturity  and risk-free interest rate  Let us first assume that the 

volatility  follows the Beta distribution with  and , that is, the 

uniform distribution, 

 

 
 

where  has a standard uniform distribution , so that  ranges between 

0.1 and 0.5. Since the exact option value  is known from (13), we can 

estimate for each  the error between the exact option price and the numerical 

approximation from the finite-order polynomial chaos. Figure 4 shows the errors of 

mean and variance for a range of  values between the exact option values and 

polynomial chaos approximations as the index  increases. For each  value, the 

magnitude of errors decreases in . 

 

 
Figure 4: Errors of mean and variance for a range of S values when the Jacobi 

polynomials chaos is used for the Gamma volatility 
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Figure 5 is a semi-log plot of the  errors (10) of mean and variance when the 

number of grids  is 128 and 256. The figure shows that the errors converge 

exponentially when the Jacobi polynomial chaos is used as a basis for the Beta 

distribution. 

 
Figure 5: Convergence for the mean (filled circle) and variance (square) with 

 (solid) and 128 (dashed) grid points with respect to the Jacobi 

polynomial chaos when the volatility  follows the Beta distribution. 

 

Next, let us consider the case when the volatility  is not uniformly distributed 

but it follows the Gamma distribution. As explained in Section 4.1, the Gamma 

distribution with a parameter  has the probability density function 

 and the Laguerre polynomial chaos from the Askey 

polynomial chaos family is orthonormal with respect to the density function  

Figure 6 shows the errors of the mean and variance with respect to the Laguerre 

polynomial chaos when the volatility  is given by  

 

 
 

where  follows the Gamma distribution with , so that  values mostly 

range over [0.05, 0.6]. It is shown that exponential convergence rate is also 

obtained for both mean and variance. 
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Figure 6: Convergence for the mean (filled circle) and variance (square) with 

 (solid) and 128 (dashed) grid points with respect to the Laguerre 

polynomial chaos when the volatility  follows the Gamma distribution 

 

In order to see the effectiveness of the appropriate selection of the polynomial 

chaos for the Black Scholes equation, let us compare again how the solution 

converges with respect to Jacobi, Laguerre and Hermite polynomial bases when the 

volatility  follows a certain random distribution. Figure 7 compares the 

convergences of the option values in terms of the Jacobi (filled circle), Laguerre 

(square), and Hermite (star) polynomial chaos when the random  follows the 

Beta distribution (14). The Jacobi polynomial chaos results in significantly faster 

convergence than the Laguerre or Hermite polynomials for both mean and variance 

similarly to the results observed in Section 4.1. 

 

 

 
Figure 7: Convergence for the (Left) mean and (Right) variance with respect 

to the Jacobi (solid), Hermite (filled circle), and Laguerre (square) polynomial 

chaos when the volatility  follows the Beta distribution. 
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Table 2 and Table 3 compare the convergence when two different volatility 

functions,  and  are considered, respectively.  

is the standard uniform random variable  Both tables confirm that when 

appropriate polynomial chaos is chosen as a basis in the random space for the 

volatility, the solution to the Black Scholes equation converge significantly fast, 

but other polynomial chaos, however, may result in a slower convergence. 

 

Table 2: Errors in mean (and errors in variance inside the parentheses) with respect 

to Jacobi, Laguerre, and Hermite polynomial chaos for various orders P when the 

volatility , for a standard uniform distribution . 

 

 P=1 P=2 P=3 P=4 

Hermite  0.065454 

(0.085752)  

0.003437 

(0.011514) 

0.011311 

(0.038713)  

0.000828 

(0.002437)  

Laguerre  0.065454 

(0.085752)  

0.037745 

(0.065843)  

0.013580 

(0.031650)  

0.008696 

(0.024110)  

Jacobi  0.065454 

(0.085752)  

0.003904 

(0.007744) 

0.000484 

(0.001367)  

0.000331 

(0.000183)  

 

 

Table 3: Errors in mean (and errors in variance inside the parentheses) with respect 

to Jacobi, Laguerre, and Hermite polynomial chaos for various orders P when the 

volatility , for a standard uniform distribution . 

 

 P=1 P=2 P=3 P=4 

Hermite  0.093967 

(0.107185)  

0.043596 

(0.118877) 

0.010517 

(0.010216)  

0.005559 

(0.015068) 

Laguerre  0.093967 

(0.107185)  

0.029228 

(0.054360) 

0.003983 

(0.005413) 

0.002736 

(0.007506)  

Jacobi  0.093967 

(0.107185)  

0.036413 

(0.101943) 

0.004124 

(0.003747)  

0.000763 

(0.001684)  

 

5. Conclusions 

 

In this paper, the polynomial chaos expansion has been extended to the analysis 

of the stochastic linear advection equation and the Black Scholes equation with a 

random volatility. Statistical moments of the solution can be easily obtained from 

its Fourier coefficients with respect to the polynomial chaos. The substantially fast 

convergence is obtained when appropriate polynomial basis is used to estimate 

Fourier coefficients. For instance, when Jacobi polynomial chaos is chosen as a 

basis in the Beta random space, numerical option price converges exponentially. 

Usage of non-proper polynomial chaos may lead to lowering of its convergence 

rate.  
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When the volatility of the Black Scholes equation is stochastic, characteristics 

of the solution may be affected. The analytical study of these problems, especially 

of error analysis will be postponed to our future research. We will also work on the 

Black Scholes equation with a more general type of randomness in volatility. 
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Appendix A. Orthogonal polynomials 
 

Here are brief summary of Hermite and Laguerre polynomials. See 

Szego(1939) for more. Normalized Hermite polynomials  of degree  is 

defined by  with  For example, 

  are orthonormal with 

respect to the probability density function of the Gaussian distribution as the 

weight function of the inner product, 

, where . 

Normalized Hermite polynomials satisfy the recurrence relation, 

  

 

Laguerre polynomials  of degree  with the parameter  is defined 

by  For example, when   is 

defined by  and 

 

 are orthonormal with respect to the probability density function of the 

Gamma distribution as the weight function of the inner product. For instance, when 

  where , and 

the recurrence relation  is 

satisfied. 

 

Appendix B. Error analysis 

 

Let the function  be the solution of the Black Scholes equation when 

the volatility  is a constant, . Under simplifying assumptions, we can 

derive a following error estimate in Theorem 2. 

 

Theorem 2. Let  for a Brownian motion  and suppose that  

can be derived from  by  
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If  denotes the truncation of the expansion of the 

solution (1) over the truncated index set 

 

 
 

where  is the multi-variate Hermite polynomial of , then the error can be 

estimated by 

 

 
where  . 

 

Proof. Suppose  are an orthonormal basis in  defined by 

 

 
 

for . Define  and  For 

 satisfies 

 

 
 

where  is the characteristic function,  if  and 0 

otherwise. Then  

 

 
 

In particular, . Thus,  
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where . Set  and 

Then  and  are orthogonal, . From 

 ,  Expanding  in Taylor's 

series with respect to  gives 

 

 
for some . Expanding this in Taylor's series with respect to  gives 

 

 

 
 

for some  Let  and 

 If  is defined by 

 

 
 

 is a polynomial of with maximum order  Since  

is a Hermite polynomial expansion, which is an orthogonal projection with respect 

to Gaussian measure, 

 

 
 

Using the Minkowski's inequality, 
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Next,  satisfies 

 

 
because 's are orthogonal. Thus,  is bounded by 

 

 
 

Given a Gaussian random variable ,  Since 

,  is a linear combination of centered Gaussian 's so that it is a 

centered Gaussian with mean 0 and variance . Thus, 

 

 
Since , 

 

 
because 

 

 

 
Now  

 

 

 

 
 

and (B.1) is derived.  
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