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Abstract. The current period of financial and real instability questions the 

usual approaches concerning financial markets’ operating mechanisms. Thus, 

several alternatives have been proposed in order to provide a more realistic 

description of markets’ mechanisms. Among these, the Fractal Market Hypothesis 

accounts for discontinuous and non-periodical evolutions in financial assets’ 

prices. The proposed study analyzes the main properties of Rény’s entropy 

estimated for 139,671 intra-day observations on USD/CAD exchange rate over 

various time scales. The paper argues that if the Fractal Market Hypothesis stands, 

than the respective properties are conserved despite the shifts from high to low 

frequency. Overall there are some empirical evidences supporting such time-scale 

invariance. However, these evidences ought to be interpreted with caution since 

the shifts from high to low frequency do not entirely preserve the entropic 

characteristics of data. 
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1. Introduction 

 

The current global financial and real turmoil is undermining the efficiency of the 

international financial markets and, consequently, generates a global shock. 

Furthermore, it raises questions on how these markets really work. In particular, it 

reveals the necessity to take into consideration the heterogeneity of investors’ 

beliefs, asymmetric and imperfect information, as well as bounded rationality 

portfolio decision. Thus, it is required a more realistic description of the 

interactions between market participants and of the fundamentals used in their 

decisions. 

In the classic portfolio management theory build on the Markowitz’s mean-

variance model, selecting the structure of the investor’s portfolio depends primarily 

on the first and second moments corresponding to the expected return and the 

variance-covariance matrix of the return. However, these moments are generally 

inadequate in explaining the de facto portfolio structure in the case of non-normal 

return distribution (see, for instance, Chunhachinda et al., 1997 for a detailed 

analysis). Hence, several extensions of the standard model were developed by 

including the skewness of return in portfolio selection. Still, some studies (e.g. 

Prakash et al., 2003) suggest that the portfolio weights obtained by using these 

versions often focus on a few assets or extreme positions and tend to offer limited 

possibilities for portfolio diversification. In this context, an increasing literature 

(Bera and Park, 2005, Jana et al., 2009, Usta and Kantar, 2011) attempts to use 

entropy as an objective function in multi-objective model portfolio selection. An 

underlying argument in such approach is that entropy is more able to capture self 

information - the information provided by a random process about itself (Gray, 

2011) – compared to other measures, such as variance, by being a better descriptor 

of the intrinsic uncertainty associated with the evolutions of the financial assets’ 

prices. Thus, the study of the entropic properties of financial assets’ prices can 

provide relevant information for portfolio’s structure and management, by 

improving the allocation decisions. 

Starting with the Fractal Market Hypothesis (FMH), new approaches to the 

discontinuous and non-periodical evolutions of financial markets have been 

proposed. FMH postulates the significant impact of information and investment 

horizons on investors’ behavior. It incorporates the following assumptions (see 

Peters, 1997): 

- The market is formed by heterogeneous investors; 

- Investors’ decisions incorporate, in a non-uniform manner, information 

over different time horizons; 

- Financial assets’ prices reflect a combination of short-term technical 

trading and long-term fundamental valuation; 

- Investors’ preferences in regard to the trading time horizons for a specific 

financial asset largely depend upon the sensitivity of the respective asset’s 

return to the macroeconomic cycles.   
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In this framework, Molgedey and Ebeling (2000) provide evidences on Dow Jones 

Index that in spite of high stochasticity in average there might be special local 

situations where local order exists and the predictability is considerably higher than 

average. Zunino et al. (2009) found robust evidences that the degree of market 

inefficiency is positively correlated with the number of forbidden patterns and 

negatively correlated with the permutation entropy. 

Glattfelder et al (2011) have discovered 12 independent new empirical scaling laws 

in foreign exchange data series that hold for close to three orders of magnitude and 

across 13 currency exchange rates. They have shown that the scaling laws give an 

estimation of the length of the price-curve coastline, which in their study turns out 

to be significantly long. The main implication of such findings is perhaps the idea 

that the analysis of financial assets’ prices should be linked more to their behavior 

as event-based processes, instead of focusing on their stochastic nature. 

Mercik and Veron (2002) provide evidences that foreign exchange rate returns 

satisfy scaling with an exponent significantly different from that of a random walk. 

They also provide evidences that the conditionally exponential decay (CED) model 

can be used to identify the mathematical structure of the distributions of FX returns 

corresponding to the empirical scaling laws. 

 

This study contributes by analyzing the properties of the entropy series estimated 

for a major currency pair in FX market, Unites States dollar / Canadian dollar, over 

various time scales ranging from 5 minutes to 5 trading days. The underlying 

argument is that if the exchange rate exhibits fractalic properties than the main 

characteristics of the associated entropy should be preserved with the shift from 

high to low frequency data. This should happen as a consequence of the self-

similarity property of fractals which makes them scale-invariant. In other words, 

the impact of information shocks on the heterogeneous market participants should 

more or less be the same regardless of the decisional time frame. 

The next section describes the methodology and research hypotheses. Section 3 

presents the data while Section 4 reports the main results. Section 5 concludes. 

 

2. Methodology and research hypotheses 

 
Since entropy is a measure of the size of a data distribution contained within a 

bounded region, it appears naturally to use it for problems where the detailed 

scaling behavior of correlations over substantial scale intervals is of interest. Such 

a problem is represented by the study of financial assets’ prices formation over 

different time frames when several types of effects may distort scale distributions, 

and where the correlation structure is not trivially expressible as a power law or 

other elementary function. 

We are considering the intraday prices at the time τj, x(τj), defined as: 
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( ) ( ) ( )
( )ln 1

2

p pbid j ask j
x j

 τ + τ τ =   
 

 

Hence {τj} is the sequence of the tick recording times which is unequally spaced. 

This definition of tick-by-tick prices consider the average of the bid and ask price 

rather than either the bid or the ask series as a better approximation of the 

transaction price. Such approach seeks to account for the observation that market 

makers frequently skew the spread towards a more favorable price to offset their 

position. In the same, it should be noticed that since it works with the natural 

logarithm of the average of bid and ask prices, such definition implies a 

symmetrical behavior when prices are inverted. 

Our purpose is to estimate the so-called Rény’s entropy of order α (see Rény, 1961; 

Ullah, 1996; Jizba and Arimitsu, 2004; Karmeshu, 2003) which is an extension of 

the Shannon’s entropy to an incomplete probability distribution of a probabilistic 

system with n states, ( ), ,..., , 01 2P p p p P pn n i= ⊂ ≥  ,  pi reflecting the probability of the 

i-th state si and P being the set of all probability distributions on finite sets, with 

i=1,2,…,n and 1

1

n

pi

i

≤

=
∑ : 

( ) ( ) ( )11
; log 0; 1 2

1
1

n i

n

H P pR n

i

α

 
 α = α > α ≠ − α  = 
∑  

Here the entropy measure is a function )1 : 0,
n

H PR → ∞  and log stands for log2, with 

( ) ( )1 1;
lim

1

n n
H P H PR n S nα →

α→

where ( )1
n

H PS n is the function of Shannon’s entropy for a 

discrete probability distribution Pn. 

We assimilate the probabilities with the data frequency at the observation ti, f(ti), 

being defined as 

( ) ( ) ( )( ) ( )1
; ¦ 1, 3f t f t S N x r r t S ti i j j i i

S
≡ ≡ ∈ − +    

Here S is the number of successive prices on which the entropy is computed (for 

instance 100 or 1000 successive trade prices) and N(x(rj)) is the counting function. 

Our strategy is based on the estimation of the Rény’s entropy on K non-overlapping 

“windows” which are splitting a database of N tick observations (K=N/S), each of 

them with the length S, length which is equally time spaced, for some arbitrary 

values of S (5, 15, 60, 1440 and 7200 successive observations) and of α (0.50  and 

2.50). The purpose is to study the behavior of the entropy series depending on the 

length S of the computation sequence of prices. Since an increase in S is equivalent 

with an increase in the corresponding time span, this is as well an implicit study of 

the prices’ behavior at a shift from “high” to “low” frequency in data.  
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Due to the fact that the number of the states reached by the trajectory of prices 

tends to increase with a shift from “high” to “low” frequency data, a first plausible 

hypothesis is that the entropy will increase correspondingly to such shift.  

 

Thus: 

H1: The entropy levels will be higher on lower frequency data as reflecting an 

increase in the uncertainty associated to prices’ evolutions. 

However, such conclusion must be extended with an examination of the changes in 

the entropy levels at a given length of the estimation “window”. If there is a 

“learning” mechanism for an individual data frequency, it should lead to 

adjustments in entropy as a consequence of changes in the degree of uncertainty 

concerning prices’ evolutions in the reference time span. 

 

H2: If the investors are learning about current market dynamics - as more 

information about the observed values of prices is gathered - their portfolio 

corrective decisions should be reflected by low amplitude adjustments in 

information entropy. As a consequence, the entropy series must follow a random 

walk (eventually with drift) process. 

 

In order to test this hypothesis, a possible approach consists in the use of the so-

called Lo and MacKinlay (1988; 1989) overlapping Variance Ratio Test. This test 

examines the predictability of a series by comparing variances of differences of 

data computed over different intervals (or successive observations). If the data are 

assumed to follow a random walk, the variance of a –q period (or observation) 

difference should be q times the variance of the one-period (or observation) 

difference. Evaluating the empirical evidence for or against this restriction is the 

basis of the variance ratio test. More exactly, if the series 
1

n
H R satisfying 

( )1 4
nR i iH µ ε∆ = +  

where µ
 
is an arbitrary drift parameter, then the key properties of a random walk 

that are of interest for the test can be described as ( ) ( )0, , 0i i i jE E −= =ε ε ε  for all i 

and any positive j. 

The estimators for the mean of first difference and the scaled variance of the q-th 

difference are defined as: 

( )
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^
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The corresponding variance ratio is ( ) ( )

( )

^
2

^
2

1

q
VR q

σ

σ

= . 

Lo and MacKinlay (1988) show that the variance ratio z-statistic: 

( ) ( ) ( ) ( )
1

2 21 * 6z q VR q s q
−

  = −     
 

is asymptotically N(0,1) if  the estimator s
2
 is properly chosen. 

The test is firstly performed for homoskedastic random walks using the wild 

bootstraps distribution to evaluate statistical significance. Such an approach is 

based on the strong assumption that εt 
is iid Gaussian but the normality assumption 

is not strictly required. Two different alternatives are considered: 1) the entropy 

series are random walks so that variances are computed for differences of data; or 

2) the series contains the random walk innovations themselves. 

Other specifications for tests’ implementation includes the use of the rank scores 

(van der Waerden scores) instead of data level as has been proposed by Wright 

(2000), a Rademacher bootstrap error distribution, 10000 replications, the Knuth 

random number generator and an randomized assignation of ranks in the presence 

of tied data. The objective of such specification set is to provide the most general 

possible framework for the analysis of the two mentioned hypotheses and to 

account for possible local deviations of the entropy from its general pattern. 

Furthermore, we estimate the Hurst exponent of the entropy series in order to 

evaluate their “persistent” / “anti-persistent” behavior. The term “persistent” ought 

to be carefully considered. In the context of entropy, it implies that there is a 

dominant state of prices for which there is maintained more or less the same 

amount of ex-ante information where roughly the same amount of ex-ante 

information is maintained.  

 

H3: If the main corrective market mechanisms are preserved with/despite the shift 

from “high” to “low” frequency data, a certain dominant prices’ level is supposed 

to be found at each frequency and the same degree of “persistence” is preserved 

even with the translation to different frequencies.  

With the purpose of testing this hypothesis, we firstly employ the so-called 

Dispersional Analysis (also known as the Aggregated Variance method). This 

procedure supposes that the series Pn are fractional Brownian motion processes. 

Their succesive increments ξ can be viewed as the equivalents of the  fractional 

Gaussian noise (fGn): 

( ) ( ) ( ) ( )7i P i P iξ = + δ −  

The procedure averages the differenced fGn series over bins of width ℵ  and 

calculates the variance of the averaged dataset. An implementation alghorithm for 

the procedure considers the following steps: 



 

 

 

Inside the Black Box: Informational Entropy of High - Frequency Data on Forex Market 

________________________________________________________________________ 

 

 

1) Set the bin size ℵ  =1; 

2) Calculate the standard deviation of the n data points and record the point     

(ℵ , ℵσℵ ); 

3) Average neighbouring data points and store in the original dataset 

( )
( ) ( )

( )
2 1 2

8
2

i i
i

 ξ − + ξ ξ ←  

In the same time, n and ϗ are rescaled as: 

( )
2

2 9

n
n ←

ℵ← ℵ
 

4) As long as more than a certain number of data points remain (n > 

predefined number of bins) return to Step 2; 

5) Perform a linear regression on the log-log graph as: 

( ) ( ) ( )log log 10H Cℵσ = ℵ +ℵ  

The calculated slope of this regression can be seen as an estimator of the Hurst 

exponent. 

Secondly, we use an alternative evaluation method based on the so-called 

Performance Persistence Analysis (Amenc and Le Sourd, 2007). This method 

implies the recalculation of the series ξ by subtracting the mean value of the 

sample, 
−
ξ : 

( ) ( ) ( )11Z i i
−

= ξ − ξ  

Defining: 

( ) ( )

( )

( )

1

m a x1
1

m in2
1

i

Y s Z i

s

Y Y i
i n

Y Y i
i n

=

=
=

< <
=

< <

∑

 

The estimation of the Hurst exponent is obtained as: 

( )

( ) ( )

1 1 2ln
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3. Data 

 

Prices data represents 1 minute bar close prices of the USD/CAD exchange rate on 

FOREX market for a time span between 8/1/2011 (15:30:00) and 12/16/2011 

(23:59:00) (139671 observations). These data are provided by TeleTrader 

(http://www.teletrader.com). 

The bootstraps BDS test values reported in Table 1 shows that the null of identical 

and independent distributed values of exchange rates can clearly be rejected for 

almost all areas of data for m = 2,…,10 embedded dimensions. 

However, it should be noticed that the test does not clearly separate the 

independent and, respectively, identically distributed patterns. However, by taking 

into account both the changes in distribution over time and the autoregressive 

dynamics of exchange rates, the test leads to the conclusion that there are important 

deviations from the independence in data. The nature of such deviations requires 

further investigation.  Still, it can be presumed the existence of some structural 

changes in data distribution as well as some hysteresis effects leading to low order 

autocorrelations behaviors. 

 

Table 1. BDS portmanteau test for identical and independent distributed 

values of USD/CAD exchange rate  
   

Dimension 
BDS 

Statistic 

Std. 

Error 
z-Statistic Normal Prob. Bootstrap Prob. 

2 0.00006 0.00000 25081.53000 0.00000 0.00000 

3 0.00012 0.00000 22556.69000 0.00000 0.00000 

4 0.00018 0.00000 20297.92000 0.00000 0.00000 

5 0.00024 0.00000 18537.79000 0.00000 0.00000 

6 0.00030 0.00000 17144.73000 0.00000 0.00000 

7 0.00036 0.00000 16022.47000 0.00000 0.00000 

8 0.00043 0.00000 15091.88000 0.00000 0.00000 

9 0.00049 0.00000 14302.45000 0.00000 0.00000 

10 0.00055 0.00000 13629.93000 0.00000 0.00000 

Raw epsilon: 0.10305 

 

4. Results 
 

Table 2 reports the main statistics of entropy estimations while the computation 

“windows” varies from 5 to 7200 successive observations (ranging from 5 minutes 

frequencies to weekly ones) and α parameter is modified from 0.5 to 2.50. 

These values show that the entropy highlights a clear tendency to increase with the 

shift from “high” to “low” frequency data and also to slowly decrease for higher 

values of α parameter. Thus, the results can be seen as providing some support for 

H1. 
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Table 2. Main statistics of entropy series 

 

The Variance Ratio tests reported in Table 3 clearly reject the random walk null in 

each tested form for the low and intermediary levels estimation “windows”. 

However, for windows equals to 7200 the null of entropy series being random walk 

processes cannot be any longer rejected. So, the H2 hypothesis can have certain 

viability but is more probable to happen at “low” frequencies of prices data. 

 

Table 3. Lo-MacKinlay Variance Ratio Test for the entropy series (computed 

using rank scores) 

 
 Null: Random walk Null:Cumulated data are 

random walk processes 

 Max |z| 

(at “period” 

2) 

Wald 

(Chi-Square) 

Max |z| 

(at “period” 

16) 

Wald 

(Chi-Square) 

Length of window: 5     

α= 0.50 97.18 

(0.00) 

9508.528 

(0.00) 

231.70 

(0.00) 

63425.00 

(0.00) 

α= 2.50 97.87 

(0.00) 

9624.42 

(0.00) 

225.64 

(0.00) 

60131.20 

(0.00) 

 

Mean Median 

 

Minimum 

 

Maximum 
Standard 

deviation 
Skewness Kurtosis Observations 

Length of 

window:5 

        

α= 0.50 2.05 2.16 0.26 2.85 0.54 -0.87 3.79 27934 

α= 2.50 1.15 1.15 -0.44 2.15 0.59 -0.46 2.87 27934 

Length of 

window: 

15 

        

α= 0.50 2.79 2.86 0.09 4.09 0.60 -0.74 3.54 9311 

α= 2.50 2.19 2.26 -0.15 3.84 0.65 -0.52 3.10 9311 

Length of 

window: 

60 

        

α= 0.50 3.88 3.97 1.45 5.42 0.67 -0.56 3.08 2327 

α= 2.50 3.34 3.42 0.89 5.09 0.71 -0.50 2.96 2327 

Length of 

window: 

1440 

        

α= 0.50 6.40 6.40 5.36 7.54 0.47 0.04 2.48 96 

α= 2.50 5.71 5.70 4.44 6.89 0.54 -0.10 2.40 96 

Length of 

window: 

7200 

        

α= 0.50 7.67 7.62 6.98 8.57 0.49 0.28 1.87 19 

α= 2.50 7.08 7.05 6.03 8.22 0.52 0.17 2.84 19 
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Length of window: 15     

α= 0.50 42.90 

(0.00) 

1857.94 

(0.00) 

137.77 

(0.00) 

19960.79 

(0.00) 

α= 2.50 43.66 

(0.00) 

1927.88 

(0.00) 

129.42 

(0.00) 

17570.49 

(0.00) 

Length of window: 60     

α= 0.50 16.32 

(0.00) 

323.33 

(0.00) 

46.97 

(0.00) 

2465.62 

(0.00) 

α= 2.50 15.22 

(0.00) 

300.11 

(0.00) 

45.59 

(0.00) 

2368.15 

(0.00) 

Length of window: 1440     

α= 0.50 5.63 

(0.00) 

57.63 

(0.00) 

6.77 

(0.00) 

56.05 

(0.00) 

α= 2.50 4.16 

(0.00) 

29.81 

(0.03) 

7.06 

(0.00) 

55.60 

(0.00) 

Length of window: 7200     

α= 0.50 1.34 

(0.40) 

8.07 

(0.84) 

2.15 

(0.04) 

29.91 

(0.04) 

α= 2.50 1.13 

(0.63) 

6.47 

(0.94) 

2.41 

(0.02) 

32.02 

(0.03) 

Probability in (); Equal spaced grid: - Minimum: 2; - Maximum: 16; -Step:1; 

Bootstrap replications: 10000; Random generator: Knuth; Tie-handling: Average 

 

Table 4 suggests that the pattern of the entropy series is “persistent” (there is a 

certain conservation of the total degree of uncertainty in the market) but such 

“persistence” tends somehow to decline with the shift to “low” frequency data. 

Thus, it appears that the behavior of the entropy series is close to a fractional 

Brownian motion process (or to other processes that generate such “persistence” 

like for instance, fractional ARIMA (0,d,0) processes which also exhibit scaling 

with an exponent Hurst  greater than 0.5) especially for “high” frequency data. 

This conclusion is robust to the change in the estimation method and is especially 

valid for “extreme” values of estimation “windows”. 

 

Table 4. “Long-range” memory in the entropy series (Hurst exponent) 

 
 Dispersional analysis Performance persistence analysis 

Length of window: 5   

α= 0.50 0.80 0.75 

α= 2.50 0.79 0.75 

Length of window: 15   

α= 0.50 0.76 0.75 

α= 2.50 0.75 0.75 

Length of window: 60   

α= 0.50 0.75 0.73 

α= 2.50 0.74 0.72 

Length of window: 1440   

α= 0.50 0.75 0.69 

α= 2.50 0.75 0.69 

Length of window: 7200   

α= 0.50 0.57 0.63 
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α= 2.50 0.66 0.65 

 

In other words, there seems to be a certain degree of “persistence” for individual 

frequencies, as H3 predicts, but such degree is not necessarily the same for “high” 

and “low” frequency data. 

Another approach of the entropy “persistence” issue may consist in the 

examination of its long-run variance. A heteroskedasticity and autocorrelation 

consistent (HAC) estimator of this - 
^

Ω  - can be obtain, for instance, based on 

nonparametric kernel approach (Andrews, 1991; Newey-West, 1987): 

( ) ( )
^^

13
j T

T j
k j

T K b

∞

=−∞

 
Ω = Γ −  

∑  

For a sequence of mean-zero random p-vectors ( ){ }tV θ that may depend on a K-

vector of parametersθ , the considered sample autocovariances ( )
^

jΓ are given 

by: 

( )

( ) ( )

'^ ^ ^

1

^ ^
'

1
0

(14)

0

T

t j

t j

j V V j
T

j j j

−

= +


Γ = ≥


Γ =Γ − <

∑
 

K is a symmetric kernel (or lag window) function that, among other conditions, is 

continuous at the origin and satisfies ( ) 1k x ≤  for all x and ( )0 1k = . Tb is a 

bandwidth parameter while the term 
T

T K−
represents a correction for degrees-of-

freedom associated with the estimation of the K parameters in θ . 

We are choosing the Quadratic Spectral kernel function as: 

( ) ( )
2 2

sin

cos 15

x

x
k x

xx

χπ
α χπδ

χπβπ δ
δ

  
     = −  

  
 
 

 

The values of the parameters are set to α = 25, β = 12, χ = 6, δ = 5. The results are 

reported in Table 5. It appears that the long-run variance of entropy series slowly 

decline with the shift from high to low frequencies with the corresponding 

adjustments in the “persistence”. 

 

                         Table 5. Long-run variance of the entropy series 
 

 Long-run variance 

Length of window: 5  
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α= 0.50 8.76 

α= 2.50 9.71 

Length of window:15  

α= 0.50 6.28 

α= 2.50 6.78 

Length of window: 60  

α= 0.50 1.54 

α= 2.50 1.55 

Length of window: 1440  

α= 0.50 0.77 

α= 2.50 0.93 

Length of window: 7200  

α= 0.50 0.81 

α= 2.50 1.38 
 

Bandwidth method: Newey-West; Lag selection: Hannan-Quinn Info criterion; Window: Symmetric 

 

 

Finally, a global evaluation of the shifts in the values of the entropy estimated over 

different time horizons can be obtained by computing the time-scale differences. 

This can be done for two different estimations of the entropy
1

mRH and 

1

nRH computed on two time scales, 1τ and 2τ , with 2

1

1r
τ
τ

= >  and n < m, for 

instance in a simple way like: 

( )
( )

1 2

1 1

,

, 16
n mR Rn m

H H

r
τ τ

−
∆ =

 
 

If the changes in the main properties of the entropy are not substantially different 

over different time scales, it can be expected that the 
1 2

,

,

n m

τ τ∆ series fulfill the 

stationarity requirements, at least around a linear trend (or, alternatively, around a 

non-linear one). In other words, the 
1

nRH values should act as attractors for the 

1

mRH values. 

 

Table 6 reports on several unit root versus trend stationarity tests on the considered 

frequencies. Overall, these tests shows that the 
1 2

,

,

n m

τ τ∆ series can be viewed as 

being stationary around a (possible linear) trend.  
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Table 6. Various stationarity tests for time-scale differences of entropy series 

 
 Augmented Dickey-

Fuller (ADF) 

H0: unit root with 

drift process against 

H1: Linear trend 

stationarity 

Bierens DHOAC tests 

H0: unit root with 

drift process against 

H1: Linear trend 

stationarity 

Phillips-Perron 

H0: unit root with 

drift process 

against H1: 

Linear trend 

stationarity 

Bierens-Guo (type 5 

and 6) 

H0: Trend 

stationarity against 

H1: unit root with 

drift process 

τ1 = 5;  τ2 = 15
 

α= 0.50 -13.79 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

808046.44 

DHOAC(2,2)=-

802640.31 

H0 is rejected at the 

5% significance level 

-67229.52 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 0.06 

(p-value=0.96) 

Type 6: 0.78 

(p-value=0.58) 

H0 is accepted at the 

5% significance level 

α= 2.50 -14.28 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

994751.69 

DHOAC(2,2)=-

993476.63 

H0 is rejected at the 

5% significance level 

-60721.49 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 0.11 

(p-value=0.93) 

Type 6: 0.67 

(p-value=0.63) 

H0 is accepted at the 

5% significance level 

τ1 = 5; τ2 = 60
 

α= 0.50 -14.80 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

702681.63 

DHOAC(2,2)=-

703553.25 

H0 is rejected at the 

5% significance level 

-55170.92 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 0.15 

(p-value=0.90) 

Type 6: 0.93 

(p-value=0.52) 

H0 is accepted at the 

5% significance level 

α= 2.50 -15.21 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

147591.61 

DHOAC(2,2)=-

147815.11 

H0 is rejected at the 

5% significance level 

-55742.19 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 0.16 

(p-value=0.90) 

Type 6: 1.11 

(p-value=0.47) 

H0 is accepted at the 

5% significance level 

τ1 = 5; τ2 = 1440
 

α= 0.50 -9.79 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

26393.78 

DHOAC(2,2)=-

26352.37 

H0 is rejected at the 

5% significance level 

-75886.28 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 0.62 

(p-value=0.65) 

Type 6: 2.39 

(p-value=0.25) 

H0 is accepted at the 

5% significance level  

α= 2.50 -9.14 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

18938.07 

DHOAC(2,2)=-

18958.66 

H0 is rejected at the 

5% significance level 

-77651.37 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 1.10 

(p-value=0.47) 

Type 6: 2.56 

(p-value=0.24) 

H0 is accepted at the 

5% significance level 

τ1 = 5; τ2 = 7200
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α= 0.50 -7.62 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

18782.38 

DHOAC(2,2)=-

18811.63 

H0 is rejected at the 

5% significance level 

 

-74373.11 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 2.32 

(p-value=0.26) 

Type 6: 9.51 

(p-value=0.06) 

H0 is accepted at the 

5% significance level 

by Type 5 but 

rejected by Type 6 

tests 

α= 2.50 -7.70 

(p-value=0.00) 

H0 is rejected at the 

5% significance 

level 

DHOAC(1,1)=-

28509.44 

DHOAC(2,2)=-

28530.91 

H0 is rejected at the 

5% significance level 

-81654.86 

(p-value=0.00) 

H0 is rejected at 

the 5% 

significance level 

Type 5: 2.71 

(p-value=0.23) 

Type 6: 4.03 

(p-value=0.15) 

H0 is accepted at the 

5% significance level 

 

5. Conclusions 

 

The market mechanisms are far more complex than described by standard models 

which are based on the assumptions of rational decisions and perfect information. 

If a zoom-in approach on high frequency data is considered, then a picture of 

alternating local stability and chaotic evolutions can be revealed. Such complex 

dynamics is governed by some power laws that are relatively, but not perfectly, 

stable over various decisional time frames.  

The adjustments in the corresponding parameters of such laws reveals the changes 

in the degree of uncertainty associated to the shifts from high to low frequency 

with impact on prices’ mechanisms. Thus, a more detailed analysis of these 

adjustments can contribute not only by improving the understanding of such 

mechanisms, but also in the construction and implementation of trading strategies 

with better management of various risks faced by investors.  

 

By focusing on a large volume of intra-day data related to USD/CAD exchange 

rate, this study provides some empirical evidences that in FX market the levels of 

Rény’s entropy tends to increase on low frequency data as an expression of an 

increased degree of uncertainty. Moreover, it is revealed the fact that the entropy 

series estimated over various time scales cannot be described as random walk 

processes. In addition, it is observed that the pattern of the entropy series is 

“persistent”, although such “persistence” tends to decline with the shift to low 

frequency data.  

Finally, the conducted research shows that the time-scale differences between 

different entropy estimations are trend stationary as the high frequency values tend 

to be convergent to low frequency data. We believe that such findings can provide 

some useful insights and can support a more complex analysis of the market in an 

evolutionary perspective. 
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