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VALUE AT RISK ESTIMATION USING GARCH-TYPE MODELS 
 

 

 

Abstract. This paper examines five GARCH-type models, including 

RiskMetrics in the Value at Risk estimation. These models are applied to an optimized 

internally diversified portfolio, comprised of three benchmark indexes from three 

different countries (Romania, UK and USA) in order to asses the overall performance 

of the daily VaR  estimates at various probability  levels (1%, 2.5% and 5%). Study 

results indicate that all symmetric models outperform the asymmetric ones, both for 

normal and Student’s t  distributions. We also find that GARCH(1,1) underestimates 

1% VaR  in comparison to RiskMetrics and GARCH-t(1,1) that perform very well. 

Moreover, GARCH-t(1,1) gives better 2.5% VaR  estimates and RiskMetrics 

outperforms GARCH(1,1) and GARCH-t(1,1) for 5% VaR  estimates.    

           Key words: portfolio, volatility, Value at Risk, GARCH-type models. 
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1. Introduction 

 

Modern portfolio theory relies on the study developed by Markowitz (1952). 

Rubinstein (2002) appreciated that Markowitz’s research represents the first 

mathematical formalization of the diversification concept of investments, emphasizing 

the fact that even though diversification reduces risk, it can not eliminate it completely. 

So, through diversification risk can be reduced without having any effects on the 

portfolio expected return. Thus, investing in different classes of financial assets and in 

different industrial sectors enables investors to improve the performance of their 

portfolios (Aloui, 2010). 

Value at Risk (VaR ) is considered to be one of the most important measures of market 

risk and it has been widely used for financial management by institutions including 
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banks, regulators and portfolio managers. Since the risk management group J.P. 

Morgan developed the RiskMetrics model for VaR  measurement in 1994, this model 

has become a benchmark for measuring market risk (So,Yu, 2006). Other methods, 

such as those based on GARCH-type models have also been consistently used in the 

estimation of Value at Risk. A crucial factor for the accuracy of the VaR  estimates 

relies on the underlying measure of volatility (Moosa, Bollen, 2002). Another problem 

that arises in the estimated VaR  is finding a suitable performance measure that has the 

capacity to evaluate the performance of the estimates correctly. 

Taking all these aspects into consideration, we aim to analyze in this paper the 

performance of the daily VaR  estimates of an optimized internationally diversified 

portfolio, estimates based on five volatility measures namely: RiskMetrics, 

GARCH(1,1), EGARCH(1,1), GARCH-t(1,1) and EGARCH-t(1,1). We chose 

precisely these measures due to the fact that the empirical distribution of financial 

assets exhibits some well-known stylized facts like volatility clusters, leptokurtosis and 

leverage effects (Tavares A.B., Curto, Tavares G.N., 2008), and these models are able 

to capture such characteristics.  

The remainder of the paper is organized as follows: Section 2 presents the theoretical 

background related to the estimation of the daily VaR , as well as aspects related to the 

volatility measurement of financial time series using GARCH-type models and also 

aspects regarding the evaluation of the performance of the VaR estimates. In Section 3 

we report the empirical results of our study and in Section 4 we provide a summary of 

our conclusions. 

 

2. Value at Risk estimation using GARCH type models 
 

2.1. Value at Risk )(VaR  

 

The Basel Committee on Banking Supervision at the Bank for International 

Settlements imposed banks and other authorized financial institutions to 

communicate at the beginning of each day the daily estimated risk to the closest 

monetary authority using one or more models of Value at Risk )(VaR . These 

models have become a very popular tool for measuring the market risk of a portfolio 

of financial assets. VaR  represents the decline in the market value of an asset or a 

portfolio of financial assets that can be expected within a given time horizon with a 

given probability. In order to define the concept of VaR  of a portfolio of securities, 

we must first define the daily returns of the portfolio (Moosa, Bollen, 2002). In the 

empirical literature it is assumed that the behavior over time of the daily price of a 

portfolio of securities in a capital market can be represented as: 

 

tttt epp ++= − )ln()ln( 1µ        (1) 
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where tp  represents the market price of the portfolio at time t , tµ  is the mean daily 

return, and 2)var( tte σ= . In this study we concentrate only on daily data, and we shall 

therefore assume that 0=tµ .1 We define the daily continuously compounded return of 

a portfolio at time t  as: 
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Therefore 
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tt epp 1−=          (4) 

 

Let c
tr  be the critical portfolio return such that the observed return on day t  is less 

than or equal to the critical level with a given probability. Thus, for a probability of 

%α  we have: 

 

%)( α=≤ c
tt rrP         (5) 

 

The critical portfolio value c
tp  that corresponds to a probability of %α  implies the 

fact that the observed return on day t  will be less than or equal to c
tr  and it can be 

obtained by combining equations (4) and (5). So 
 

c
tr

t
c
t epp 1−=          (6) 

 

For a portfolio whose market price is tp , the VaR  represents the loss in the value of 

the portfolio with %α  probability. Thus 

 
c
ttt ppVaR −=          (7) 

 
By combining equations (6) and (7) we obtain: 

                                                 
1
 See Moosa, Bollen (2002). 
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c
tr

ttt eppVaR 1−−=         (8) 

 

We know that xe x +≈1  when x  is very small, so the Value at Risk can be calculated 

as: 

 

)1(1
c
tttt rppVaR +−= −        (9) 

 

The critical return for %α  probability depends on the values chosen for α . Therefore 

we chose in our study three common values: %1 , %5.2  and %5 . An important 

hypothesis of the VaR  model is the fact that the portfolio returns are normally 

distributed, so the critical return for these probability levels will be given by: 
 

Table 1 

The value of the critical return for different probability levels 

Probability level Critical return 

%1=α  %5.2=α  %5=α  
c
tr  tσ326.2−  tσ96.1−  tσ645.1−  

 
The Value at Risk for all three probability levels can be calculated as: 

 

Table 2 

Value at Risk for different probability levels 

Probability level Value at 

Risk %1=α  %5.2=α  %5=α  

tVaR  )326.21(1 ttt pp σ−− −  )96.11(1 ttt pp σ−− −  )645.11(1 ttt pp σ−− −  

where tσ  represents the volatility of the portfolio on trading day t . The expected value 

of 1+tVaR  at time t , respectively ][ 1+tt VaRE , is given by: 
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because [ ] ttt ppE =+1  and [ ] ttt ppE = .
2
 

 

Table 3 

Expected value of the critical return at time t  for different probability levels 

Probability level Expected value 

of the critical 

return at time t  

%1=α  %5.2=α  %5=α  

][ 1
c
tt rE +  ]ˆ[326.2 1+×− ttE σ  ]ˆ[96.1 1+×− ttE σ  ]ˆ[645.1 1+×− ttE σ  

 

An estimator of 1+tVaR  for all the chosen probability levels is defined as: 

 

Table 4 

Estimator of the Value at Risk for different probability levels 

Probability level Estimator of  

1+tVaR  %1=α  %5.2=α  %5=α  

1+

∧

tVaR  1
ˆ326.2 +×× ttp σ  1

ˆ96.1 +×× ttp σ  1
ˆ645.1 +×× ttp σ  

 

Taking all these aspects into consideration we can conclude that the estimation of VaR  

is dependent on the estimate of the volatility parameter tσ . Providing accurate 

estimates is of crucial importance because poorly estimated risk may lead to a sub-

optimal capital allocation with consequences on the profitability or even financial 

stability of institutions (Manganelli, Engle, 2001). 

 

 

2.2. GARCH-type models 

 

In order to provide accurate estimates of the volatility parameter we use in our 

empirical study five volatility measures: (i) the variance given by the RiskMetrics 

model; (ii) the conditional variance derived from a GARCH(1,1) model; (iii) the 

conditional variance derived from an EGARCH(1,1) model; (iv) the conditional 

variance derived from a GARCH-t(1,1) model and (v) conditional variance derived 

from an EGARCH-t(1,1) model.  

The basic GARCH model is based on the assumption of normal distribution for the 

asset returns and this model is able to capture several stylized facts of financial returns 

                                                 
2 When financial prices are modeled as random walks, as represented in equation (1), it can be 

easily verified that ttt ppE =+ ][ 1  and ttt ppE =][ . 
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series like heteroscedasticity (time-dependent conditional variance) and volatility 

clustering. One of the primary restrictions of this model is the fact that it enforces a 

symmetric response of volatility to positive and negative shocks. However, it has been 

argued that a negative shock to a financial time series is likely to cause volatility to rise 

more than a positive shock of the same magnitude (Brooks, 2010). Such asymmetries 

are typically attributed to leverage effects and one of the models that can explain these 

effects is the exponential GARCH (EGARCH) model proposed by Nelson (1991). 

Another extension of the standard GARCH-type models is to substitute the conditional 

normal density with a Student’s t  density in order to allow for excess kurtosis in the 

conditional distribution (Bollerslev, 1986). As financial time series are generally 

skewed, the major drawback of the Student’s t  density is the symmetry. 

 

2.2.1. The RiskMetrics Model 

 

In JP Morgan’s RiskMetrics system for market risk management, the portfolio returns 

are generated as follows: 

 

tt er =  , te ~ ),0( 2
tN σ  

2
1

2
1

2 )1( −− −+= ttt rλλσσ         (11) 

 
where 10 ≤≤ λ  is the smoothing parameter (So, Yu, 2006). The formulation in the 

mean equation implies that the conditional distribution of returns is normal with zero 

mean and 2
tσ  variance. One main characteristic of the RiskMetrics model is that the 

conditional variance can be written as an exponentially moving average (EWMA) of 

the past squared returns (innovations): 

 

...))(1( 2
3

22
2

2
1

2 +++−= −−− tttt rrr λλλσ        (12) 

 

The smaller the smoothing parameter, the greater is the weight given to recent return 

data. RiskMetrics found that the estimates were quite similar across assets, and 

therefore advised that 94.0=λ  can be used for daily data and 97.0=λ  for monthly 

data. One of the most important advantages of the RiskMetrics model is the fact that it 

tracks variance changes in a way that is broadly consistent with observed returns 

(Christofersen, 2004). 

 

2.2.2. GARCH(1,1) 

 

The GARCH model has been developed independently by Bollerslev (1986) and 

Taylor (1986). This model allows the conditional variance to be dependent upon 

previous own lags. The GARCH(1,1) model is defined as: 
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tt er = , te ~ ),0( 2
tD σ  
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where ),0( 2
tD σ  represents a conditional distribution with zero mean and variance 2

tσ , 

and 0α , 1α , β  are non-negative parameters with the restriction of 11 <+ βα  in order 

to ensure that the conditional variance is positive. In this model the conditional 

variance can be interpreted as a weighted function of a long term average value 

(dependent on 0α ), of the information related to the volatility during the previous 

period ( 2
11 −trα ) and of the variance during the previous period ( 2

1−tβσ ). In academic 

literature a GARCH(1,1) model is considered to be sufficient in capturing the 

evolution of the volatility. 

2.2.3. EGARCH(1,1) 

The exponential GARCH model was proposed by Nelson (1991). There are various 

ways to express the conditional variance equation, but one possible specification is 

given by: 
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This model has several advantages in comparison to the GARCH model because there 

is no need to artificially impose non-negativity constraints on the model parameters 

due to the fact that the log form allows the parameters to be negative without 

conditional variance becoming negative. Moreover, asymmetries are allowed under the 

EGARCH formulation, because the coefficient γ  captures the asymmetric impact of 

news. Thus if the relationship between volatility and returns is negative, then γ  will be 

negative, negative shocks having therefore a greater impact than positive shocks of the 

same magnitude. Moreover, a significant α  captures the volatility clustering effect and 

ω  represents the non-conditional variance coefficient. Even though, in the original 

relationship, Nelson assumed a Generalized Error Distribution (GED) structure for the 

errors, almost all applications of EGARCH employ conditionally normal errors 

(Brooks, 2010). 
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2.2.4. GARCH-t(1,1) and EGARCH-t(1,1) 

 

GARCH models are estimated on the assumption that the conditional errors follow a 

normal distribution, but in the context of stock market returns, the distribution of the 

errors is often characterized by fat tails or excess kurtosis. One of the extensions of the 

GARCH models is to substitute the conditional normal density by the Student’s t  

density in order to allow for excess kurtosis in the conditional distribution. Thus, the 

errors follow a Student’s t  distribution ( te ~ ),0( 2
tvT σ ) instead of a normal distribution 

( te ~ ),0( 2
tN σ ). ),0( 2

tvT σ  denotes the Student’s t  distribution with zero mean, 2
tσ  

variance and v  degrees of freedom. The new parameter v  determines among other 

characteristics the kurtosis of the conditional distribution. 

 
2.3. The performance of the VaR  estimates 

 
In order to asses the overall performance of the Value at Risk estimates we use a 

performance measure:  

 

αα ˆ−=ePerformanc          (15) 

 

where α  represents the probability used in the VaR  estimation and α̂  represents the 

sample coverage. The sample coverage α̂  represents the proportion of profits/losses of 

the portfolio ( 1−− tt pp ) greater than the VaR  estimates. When α̂  is close to α  we 

consider that the VaR  estimation method is a good one. Therefore, the smaller 

discrepancy between α̂  and α , the better performance is the estimation method (So, 

Yu, 2006).  

 

3. Empirical results 
 

3.1. Data and descriptive statistics 

 

We selected three benchmark indexes from three different countries, namely Romania 

(BET), UK (FTSE100) and USA (S&P500) in order to construct the internationally 

diversified portfolio. We chose these indexes because FTSE100 and S&P500 represent 

the most liquid and efficient financial assets in the world (Tavares A.B., Curto, Tavares 

G.N., 2008). We computed a database containing daily returns over the period January 

4, 2005 to June 1, 2010, being registered 1297 observations using the following 

formula: 
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where itr  represents the continuously compounded daily return on the index i  at time 

t , itp  represents the price on the index i  at time t , with 3,1=i  and 1297,1=t . In the 

first part of our analysis we used the Markowitz (1952) model of portfolio selection in 

order to find the optimal weights that minimize the variance of the internationally 

diversified portfolio. Thus, we obtained the resulting portfolio weights: 137.0  for the 

BET index, 466.0  for the FTSE100 index and 397.0  for the S&P500 index. In Table 

5 we summarize the descriptive statistics for the indexes and the optimized portfolio.  

 

         Table 5 

Descriptive statistics 

 BET FTSE100 S&P500 Portfolio 

Min -0.135461 -0.092646 -0.094695 -0.081198 

Max 0.105645 0.093842 0.109572 0.093732 

Mean 0.000011 0.000049 -0.000080 -0.000017 

Standard 

Deviation 

0.021893 0.014304 0.015155 0.012772 

Skewness -0.665793 0.062484 -0.029192 -0.101215 

Kurtosis 8.364870 11.03812 12.24093 11.36731 

Jarque-Bera 1651.241 

Prob. 

0.000000 

3492.551 

Prob. 

0.000000 

4615.061 

Prob. 

0.000000 

3785.775 

Prob. 

0.000000 

 

The results show that the riskiest market is the national capital market, the less risky 

being the chosen portfolio (this result can be attributed to the fact that by using the 

model developed by Markowitz the variance of the portfolio is minimized). The lowest 

return is obtained in the case of the S&P500 index, the biggest one being obtained by 

the FTSE100 index. According to the skewness and kurtosis indexes, all data series are 

asymmetrical and exhibit excess kurtosis. The Jarque-Bera statistics are highly 

significant for all return series for a significance level of 1%, being confirmed the 

assumption that the series are not normally distributed. Figure 1 below depicts both 

the daily closing prices of the optimized portfolio and the daily returns. 
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                  Figure 1. Plots of the Portfolio-Daily closing prices and returns 

 

We can observe from the graphic that the returns were fairly stable over the period 

January 2005 to September 2008. After this date all return series manifested instability 

especially due to the effects of the global financial crisis. Moreover, we can observe 

that the series presents a feature specific to nonlinear models, namely volatility 

clustering. Thus, the nonlinear dependencies can be explained by the presence of 

conditional heteroscedasticity. In order to confirm this conclusion we performed the 

Engle (1982) test aiming to detect any ARCH effects in the portfolio returns series. 

According to the test results there are ARCH effects in the series (see Table 6). Such 

behavior can be captured using the GARCH-type models described in Section 2. 

 

          Table 6 

ARCH Test Results 

Heteroskedasticity Test: ARCH   

F-statistic 76.19271     Prob. F(5,1285) 0.0000 

Obs*R-squared 295.2189     Prob. Chi-Square(5) 0.0000 

 

3.2. Value at Risk estimation results using GARCH-type models 

 

We estimated the daily portfolio volatility as an one-step forecast of the GARCH-type 

models, setting 2
0σ  (the variance of the first observation) equal to the variance of the 

entire section of portfolio squared returns and 2
0r  (the squared return of the first 

observation) equal to average return of the entire section of portfolio squared returns. 

 

3.2.1. Value at Risk estimates based upon RiskMetrics volatility 

 

The daily estimated volatility of the chosen portfolio was calculated using a value of 

94.0  for the smoothing parameter and as we mentioned in Section 2.1, the VaR  daily 
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estimates were calculated for three different probability levels, namely: %1 , %5.2  and 

%5 (see Table 4). The estimated model conducted to the following result: 
 

2
1

2
1 06.094.0ˆ −− += ttt rσσ        (17) 

 

 

 
Figure 2 

Value at Risk estimates based upon RiskMetrics volatility for different 

probability levels ( %1 , %5.2  and %5 ) and the Portfolio daily Profit/Loss 

 

In order to asses the overall performance of the Value at Risk estimates we used the 

performance measure described in equation (15). 

 

Table 7 

Performance results of the Value at Risk estimates based upon the RiskMetrics 

model 

Probability level 

%1=α  

Probability level 

%5.2=α  

Probability level 

%5=α  

Model 

Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance 

RiskMetrics 1.5% 0.5% 3.4% 0.9% 6.6% 1.6% 
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The results show that the sample coverages are very close to their corresponding 

probability levels, leading to the conclusion that the estimation method leads to a good 

Performance in this case. The smallest discrepancy between the sample coverage and 

the corresponding probability level is obtained for the %1  level. Figure 2 depicts the 

VaR  estimated each day using this methodology and the profits/losses that occurred 

the next day. There are about %1  of times that the Value at Risk is exceeded, a result 

consistent with the values obtained for the Performance measure. 

 

3.2.2. Value at Risk estimates based upon GARCH(1,1) volatility 

 

The estimation of a GARCH(1,1) model conducted to the following result: 

 
2
1

2
1

2 086914.0910640.0 −− += ttt rσσ  3      (18) 

        

The estimated coefficients of this model are highly statistically significant for all 

relevant significance levels. The coefficient of the conditional variance is 0.91 and this 

implies that the shocks to the conditional variance are persistent and that large changes 

in the conditional variance are followed by other large changes and small changes are 

followed by other small changes. Due to the fact that the variance intercept coefficient 

0α  is very small we did not take it into consideration in the calculation of the 

conditional variance. Figure 3 depicts the daily VaR  estimates based upon 

GARCH(1,1) volatility and the profits/losses that occurred the next day.  
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Figure 3 

Value at Risk estimates based upon GARCH(1,1) volatility for different 

probability levels ( %1 , %5.2  and %5 ) and the Portfolio daily Profit/Loss 

 

 

 
 

Table 8 

Performance results of the Value at Risk estimates based upon the GARCH(1,1) 

model 

Probability level 

%1=α  

Probability level 

%5.2=α  

Probability level 

%5=α  

Model 

Sample 

coverage 

(α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance 

GARCH(1,1) 2% 1% 3.6% 1.1% 7% 2% 

 

 

According to the results from Table 8 the smallest discrepancy between the sample 

coverage and the corresponding probability level is obtained once again for the %1  

VaR . As it can be observed also from Figure 3 the VaR  estimated each day using the 

GARCH(1,1) model represents a good estimation method.  
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3.2.3. Value at Risk estimates based upon EGARCH(1,1) volatility 

 

The estimation of this model conducted to the following result: 
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          (19) 

 

The estimated coefficients of this model are highly statistically significant for all 

relevant significance levels. The coefficient estimate on 
2
1

1

−

−

t

tr

σ
 is negative, suggesting 

that negative shocks imply a higher next period conditional variance than positive 

shocks of the same magnitude (the leverage effect specific to asymmetric models). This 

coefficient reflects the asymmetric impact of news on contemporaneous volatility. 

Moreover, the significance of the α  coefficient captures the volatility clustering effect.  

 

Figure 4 

Value at Risk estimates based upon EGARCH(1,1) volatility for different 

probability levels ( %1 , %5.2  and %5 ) and the Portfolio daily Profit/Loss 
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Table 9 

Performance results of the Value at Risk estimates based upon the EGARCH(1,1) 

model 

 

Probability level 

%1=α  

Probability level 

%5.2=α  

Probability level 

%5=α  

Model 

Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance 

EGARCH(1,1) 12.6% 11.6% 16.3% 13.8% 20.7% 15.7% 

 

 

 

According to the results from Table 9 and as it can be observed from Figure 4 this 

method does not represent a good estimation method, because the discrepancies 

between the sample coverages and their corresponding probability levels are very 

large. 

 

 

3.2.4. Value at Risk estimates based upon GARCH-t(1,1) volatility 

 

 

The estimation of a GARCH-t(1,1) model conducted to the following result: 

 

 
2
1

2
1

2 092773.0908674.0 −− += ttt rσσ       (20) 

 

 

The estimated coefficients of this model are highly statistically significant for the 

significance levels of 1%, 5% and 10%, with the exception of the variance intercept 

coefficient 0α  that is significant only for %5  and %10  significance levels.  
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Figure 5 

Value at Risk estimates based upon GARCH-t(1,1) volatility for different 

probability levels ( %1 , %5.2  and %5 ) and the Portfolio daily Profit/Loss 

 

 
 

 

Table 10 

Performance results of the Value at Risk estimates based upon the GARCH-t(1,1) 

model 

Probability level 

%1=α  

Probability level 

%5.2=α  

Probability level 

%5=α  

Model 

Sample 

coverage 

(α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance 

GARCH-

t(1,1) 

1.5% 0.5% 3.1% 0.6% 7% 2% 

 

The results from Table 10 show that GARCH-t(1,1) gives better %1  and %5.2  VaR  

estimates in comparison to GARCH(1,1), but underestimates %5  VaR  in comparison 
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to RiskMetrics. The Performance results for the GARCH-t(1,1) model are consistent 

with the graphics depicted in Figure 5.  

 

3.2.5. Value at Risk estimates based on EGARCH-t(1,1) volatility 

 

The estimation of the model conducted to the following result: 
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(21) 

The estimated coefficients of the model are highly statistically significant for all levels 

and the coefficient estimate on 
2
1

1

−

−

t

tr

σ
 is negative, suggesting that there are 

asymmetric information effects on the daily portfolio volatility. 

 

Figure 6 

Value at Risk estimates based upon EGARCH-t(1,1) volatility for different 

probability levels ( %1 , %5.2  and %5 ) and the Portfolio daily Profit/Loss 
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Table 11 

Performance results of the Value at Risk estimates based upon the EGARCH-

t(1,1) model 

 

Probability level 

%1=α  

Probability level 

%5.2=α  

Probability level 

%5=α  

Model 

Sample 

coverage 

(α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance Sample 

coverage 

( α̂ ) 

Performance 

EGARCH-

t(1,1) 

13.1% 12.1% 17.2% 14.7% 21.1% 16.1% 

 

 

 

Although the estimated coefficients of the model are highly statistically significant, as 

it can be observed from Figure 6 and also according to the results from Table 11 this 

method does not represent a good estimation method, because  this model 

underestimates the VaR  for all probability levels. 

 

4. Conclusions 

 

We explore in this paper the performance of the daily VaR  estimates of an optimized 

internationally diversified portfolio, estimates based on five volatility measures 

namely: RiskMetrics, GARCH(1,1), EGARCH(1,1), GARCH-t(1,1) and EGARCH-

t(1,1). In order to asses the overall performance of the estimates we use a Performance 

measure, focusing on three probability levels ( %1 , %5.2  and %5 ) and  we analyze 

the graphics of the VaR  estimated each day and the profits/losses that occurred the 

next day for all three probability levels. We find that the VaR  daily estimates are 

sensitive to the methodology employed to estimate the daily volatility. Moreover, all 

symmetric models outperform the asymmetric ones, both for the normal and Student’s 

t  distributions, because the discrepancies between the probability levels and the 

sample coverages are very large. We also find that GARCH(1,1) underestimates %1  

VaR  in comparison to RiskMetrics and GARCH-t(1,1), that perform very well. 

Moreover, GARCH-t(1,1) gives better %5.2  VaR  estimates and RiskMetrics 

outperforms GARCH(1,1) and GARCH-t(1,1) for %5  VaR  estimates. 
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