
Assistant Professor Parham AZIMI , PhD  

E-mail: P.azimi@yahoo.com 

Mehran ALIDOOST, PhD Student 

E-mail: mehranalidoost@yhaoo.com 

Department of Mechanical and Industrial Engineering 

Islamic Azad University (Qazvin Branch) 

Iran 

 

 

 

A HEURISTIC APPROACH FOR OPTIMIZING A MULTIPLE-

LOAD AUTOMATED GUIDED VEHICLE SYSTEM IN AN 

INTEGRATED FLEXIBLE MANUFACTURING SYSTEM 

 

 
 

Abstract: In this paper, we develop a heuristic for optimizing the system 

throughput of a multiple-load automated guided vehicle (AGV) system. This 

approach combines three mathematical methods such as linear regression, discrete 

even simulation and linear integer programming to maximize the system 

throughput.  The proposed approach tries to find the best input parameters of a 

flexible manufacturing system (FMS) environment such as the AVG control 

strategies, fleet size, processing times and buffer capacities. This is the first time 

that such parameters have been linked to the system throughput in optimization 

process. Finally, for verifying the effect of the input parameters, we used a 

sensitivity analysis. As the results show, the proposed approach is efficient enough 

to be used in real life FMS environments. 

Keywords: Integrated FMS, material handling systems, AGV, linear 
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1. Introduction 

The current tough challenge of manufacturers in consuming markets has obliged 
them to use flexible environment at their plant to overcome continuous changes. A 
typical FMS consists of major parts such as workstations (machines), material 
handling system (MHS) and a computer based system for integrating the last two 
parts. An AGV is a driverless, battery powered vehicle (usually controlled by on-
board computers) and transport system used for horizontal movements. They were 
introduced in 1955 [1] for the first time and since then, several applications of 
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AGVs have been developed day by day. In these systems, a number of AGVs – 
which are always called as fleet size - are dedicated to some workstations and 
storehouses in order to transport the materials. It has been shown that this kind of 
MHS have been used widely in different manufacturing systems, 56% in JIT 
delivery systems, 13% in FMS, 12% in storage load transfer with non-AS/RS 
interface, 8% in AS/RS interface, 7% in progressive assembly lines, 1% in mini 
load AS/RS interface systems and 3% in other areas [2]. In reviewing the past 
works, one may find two distinct categories. The fist category deals with the design 
of a FMS environment. In this category some common problems such as the layout 
workstations, the path layout, pickup/delivery points and etc have been verified. In 
the second category, operational issues have been considered such as selecting the 
best control strategy for AGVs, the optimal fleet size, tuning the process times and 
buffer levels. Specially, in the second category - which has absorbed many 
attentions- it is very important to coordinate the workstations with material MHS 
simultaneously to optimize the entire system. Therefore in the second category, we 
are going to integrate the total system. Several researchers have stressed that 
efficient scheduling of material handling system is critical to the overall efficiency 
of FMS [3], [7], [17].The integration of material handling system (MHS) with 
manufacturing activities can result in manufacturing systems characterized by 
flexibility, high productivity and low cost per unit produced [4],[17]. Problems that 
address the optimal co-ordination of machine scheduling and job transporting are 
certainly more practical than those scheduling problems that do not take these 
factors into consideration. Also, to achieve global optimization between material 
processing and material handling activities, manufacturing planning should 
consider these two functions simultaneously [5], [6]. Nevertheless, the integration 
of MHS with FMS inevitably increases the complexity of a problem as it comprises 
inseparable decisions for both material processing and material handling activities 
[16], [17]. 
On the other side, most machine scheduling research studies assume either that 
there are an infinite number of transporters for delivering jobs or that jobs are 
delivered instantaneously from one location to another without transportation time 
involved [16]. The majority of the research work available in FMS modeling 
literature considers only the modeling of materials processing through work centers 
and assumes uninterrupted availability of material handling equipment. This could 
be valid for conveyorized production system but it is not reasonable for AGV-
based systems [16]. Regarding the coordination between MHS and FMS, Bilge and 
Ulusoy [7] introduced a time window approach to simultaneous scheduling. 
However, due to high costs of installation of such systems, different approached 
have been introduced by researchers for designing and analyzing processes [8], [9]. 
Hulpic [10] used some activity cycle diagrams and Borenstein [11] used an 
intelligent DSS for the design and evaluation of flexible manufacturing systems. 
Chan [12] introduced an efficient approach for designing the FMS by combining 
simulation and multi criteria decision making methods. [13] developed a rule-based 
approach in this regard and [14] , [15] used similar approaches for this purpose 
specially when [15] addressed several benefits of multi-load AGV systems in 
comparison to singular ones. Lee et al. [16] showed that simulation can be a fruitful 
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tool in FMS environments in order to determine the best control strategies. Aized 
[17] combined response surface method and colored Petri net approaches to 
optimize the system throughput. His approach considered the integration between 
MHS and FMS as a key factor. Ho and Liu [18] verified several pickup-dispatching 
rules for multiple-load AGV systems by simulation and analyze of variance 
methods. Their work is very similar to the one which introduced by Azimi et al. 
[19]. However, in [19] more control strategies were tested and they used a fuzzy 
TOPSIS approach for evaluating the control strategies.  
In this paper, we introduce a heuristic algorithm which combines three methods 
such as linear regression, simulation and linear integer programming in order to 
optimize the system throughput in an integrated multiple-load AGV system. This 
algorithm has been explained in section 2. In section 3, the simulation model has 
been defined. In section 4, the results of the simulation model have been explained 
and finally, the overall conclusion is stressed in section 5. 

 
2. The heuristic algorithm 

In modern MHSs, some important criteria such as System Throughput (ST), Mean 
Flow Time of Parts (MFTP), Mean Tardiness of Parts (MFTP), AGV Idle Time 
(AGVIT), AGV Travel Full (AGVTF), AGV Travel Empty (AGVTE), AGV Load 
Time (AGVLT), AGV Unload Time (AGVUT), Mean Queue Length (MQL) and 
Mean Queue Waiting (MQW) used as the system performances [19]. But in this 
paper we used the system throughput for the optimization process as the objective 
function. The controlling mechanism of a multiple-load AGV system has been 
defined to create a general view on the control problem and then several rules for 
dispatching, delivery and load selection problems have been introduced. One of the 
main objectives of a control policy is to satisfy demands for transportation as fast 
as possible and with minimum possible conflicts between AGVs. Therefore, the 
following activities should be carried out by a controlling system: 

• Dispatching of loads to AGVs: this problem defines the strategy for 
assigning the AGVs to machines (workstations) or assigning any special 
load to the available AGV. When an AGV is idle (i.e. it has no task to do), 
some requests for transportation arise in the manufacturing system. Now 
the problem is to assign the AGV to the best request. If the request is for 
delivery, the problem is called delivery-dispatching and if it is a pickup 
one then it is called pickup-dispatching problem. However when an AGV 
arrives at a P/D point for picking up some parts, another problem arise 
which is selecting the best load for that AGV. This problem is called load-
selection problem. 

• Route selection: by the time an AGV assigns to a specific machine, now a 
new problem which is selecting the best pathway from the original point to 
the destination. The best selected way refers to selecting a pathway to 
reduce transportation time and as well preventing the possible conflictions. 
In the literature review, There are two main categories for route selection 
problem which are off-line and on-line methods. Off-line methods are 
studied when the system information is static, i.e. there is no stochastic 
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event in the system. In contrast on-line controlling systems are more 
practical because they assume that several stochastic events like machine 
or AGV break downs could be happened. The on-line controlling systems 
are centralized or decentralized. It is centralized when the controlling 
system has been installed on the AGV boards and it is decentralized when 
the controlling system has been installed on several locations in the 
manufacturing cell. 

• Dispatching the idle AGVs to the parking station(s). 
On the other side, there are several dispatching rules in the literature [5], [19]. 
When an AGV is full or empty, the next task could be determined easily because 
the next task will be delivery (when it is full) or pickup (when it is empty). But in 
some situations, the AGV is half-full so the next decision should be selected among 
a pickup task or delivery task. In this situation, three main strategies could be 
developed. One is Delivery-Task-First (DTF) rule, which just selects delivery task. 
Another one is Pickup-Task- First (PTF) rule and the final one is Load-Ratio (LR). 
According to [19], the best rule is DTF, so in the simulation experiments, this rule 
has been used, i.e. a multiple-load AGV will always perform delivery task even 
when both delivery tasks and pickup tasks are available. For pickup-dispatching 
rules four major rules have been used such as Longest-Time-In-System (LTIS) rule 
(an AGV will visit the pickup point containing the load that has been in the system 
for the longest time), Greatest-Queue-Length (GQL) rule (an AGV will visit the 
pickup point that has the greatest number of loads waiting at its output queue), 
Earliest Due Time (EDT) rule (an AGV will visit the pickup point containing the 
load with the earliest due time) and Smallest-Remaining-Processing-Time (SRPT) 
rule (an AGV will visit the pickup point containing the load with the smallest 
remaining processing time). For delivery-dispatching problem five main rules have 
been used such as Shortest-Distance (SD) rule (an AGV will visit the delivery 
point to which it is the closest), Earliest Due Time (EDT) rule (the load that has the 
earliest due time will have the highest priority to be delivery by an AGV), First-In-
Queue-First-Out (FIQFO) rule (the load that has the greatest waiting time will have 
the highest priority to be delivery by an AGV), Last-In-Queue-First-Out (LIQFO) 
rule (the load that has the latest waiting time will have the highest priority to be 
delivery by an AGV) and Shortest -Queue-Length (SQL) rule (an AGV will visit 
the delivery point  that has the latest number of loads waiting at its output queue). 
Finally for load-selection problem, First-In-Queue-First-Out (FIQFO) rule (the 
load that has the greatest waiting time at the pickup point will have the highest 
priority to be picked up by an AGV has been used in the simulation experiment. 
In the algorithm, first of all the design variables have been defined as follows: 

• Control strategies are the first category of design variables in the 
optimization process. In the next section we will explain the specified 
control strategies that were used in the algorithm. 

• The fleet size in another design variable which indicates the total 
number of AGVS that used in the MHS. 

• The buffer level at each pickup/delivery point is another set of design 
variables. 
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• The process times at each workstation are also design variables in the 
algorithm. 

Among the design variables, the fleet size, buffer levels and process times have 
upper and lower limits due to the normal financial and/or technical restrictions 
which will be defined in details in the next section. It should be mentioned that the 
design variables will be used in the algorithm as the decisions variables. This 
algorithm starts with simulation experiments. The first goal of the algorithm is to 
obtain a function between the decision (design) variables and the system 
throughput. In simulation process, several values of each decision variable which 
meets the upper (U) and lower (L) restrictions are being produced randomly. We 
use some uniform distribution functions for each design variable in the simulation 
software. The upper and the lower bounds for the uniform distribution functions 
should be similar to the upper and the lower bound of each design variable. We 
used the uniform distribution functions for producing S values for each design 
variable because the uniform distribution function has not any bias, so it is an 
efficient distribution function when we have not any information about the best 
values for the design variables. It is similar to the process of random generation 
procedures in the simulation literature. At the end of simulation process, we have 
enough samples for starting the regression phase. Each sample is a vector which 
consists of distinct values of the decision variables with distinct value for the 
system throughput obtained from the simulation model. These samples will be used 
to produce the objective function by using a linear regression model. This linear 
function and other functional constraints will be used in a linear programming 
model. The optimal solution of this model will be the best values for the decision 
variables and the system throughput. Now, we define the algorithm as follows: 
 
2.1 The algorithm: 

Step 0) Initializing: 
Denote the list of control strategies by A and assume that . Now assume 

that: 
- n denotes the number of AGVs in the system and : 

                                   (1) 

Where L and U are the upper and lower bounds for the fleet size. 
- There are m workstations and the process time of product i (i=1,2,…,p) at 

workstation j (j=1,2,…,m) is  and : 

                           (2) 

Where  and  are the upper and lower bounds for the process times. 

-  denotes the buffer level at workstation j where j=1,2,…,m and : 

                                    (3) 

Where  and  are the upper and lower bounds for the buffer levels. 

- Set l=0. 
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Step 1) Selecting a control strategy from the A: 
Set l= l+1. 
Step 2) Assume that S is the sample size that we need in the regression model. 
Produce S samples according to the uniform distribution function for each design 
variable in the simulation software. Use the same upper and lower bounds for the 
uniform distribution functions should as ones for each design variable.  
 
Step 3) Neglect the warm-up period and run the simulation model for S times and 
record the design variable values and the system throughput in each run in a 
spreadsheet. 
 
Step 4) Use the mean square method to generate a linear function between the 
design variables and the system throughput (ST), i.e.: 

               (4) 

Where  is the system throughput under control strategy l and , ,  are 

constant coefficients obtained by the mean square method. 

Step 5) Formulate the following linear integer programming model for 

optimization: 

 
                                             

(2)                    

(3)                        

(4)                                         

And solve the model. Indicate the optimal solution as ( . 

Step 6) If l=n+1 then go to Step 7 otherwise go to Step 1. 
 

Step 7) Selecting the best optimal solution: 
The optimal solution ( which indicates the best control strategy and other 

optimal design variables is defined as follows: 
                                   (6) 

Terminate the algorithm. The optimal values for each design variable are as the 

same the ones which belong to  . 

 

3. The simulation model 

We have used the flow path layout which introduced by [18]. The flow path has 

been demonstrated in Figure 1. All paths are unidirectional and there is no chance 

to have a collision state. The pickup/delivery points are designed in a way that 

unloading can be done before loading tasks. Workstations 1 and 12 are entrance 
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and sink points for products respectively. The process times have been shown in 

Table 1. All products have the same distribution functions at each workstation. All 

AGVs are multiple-load ones with load size 3 and have the same speed which is 

1.8 m/s. The loading and unloading times are 30 seconds for each AGV. There are 

6 different product (part) types in the model. Each product flow and the mix ratios 

are summarized in Table 2. We have used 10 different control strategies. These 

control strategies have been picked up from [19], although they tested 20 different 

control strategies. Since the objective function is ST in this paper, we’ve selected 

the best 10 control strategies from [19] considering system throughput criterion. 

Each control strategy consists of 4 different rules such as the task rule, the pickup-

dispatching rule, the delivery-dispatching rule and the load-selection rule [19].  In 

this paper, we picked up the best ones:  

- Greatest-Queue-Length (GQL) and Smallest-Remaining-Processing-Time 

(SRPT) have been selected as the task rules.  

- First-In-Queue-First-Out (FIQFO) rule has been selected for load-selection 

rule. 

- Shortest -Queue-Length (SQL), Earliest Due Time (EDT), Shortest-

Distance (SD), Last-In-Queue-First-Out (LIQFO) and First-In-Queue-

First-Out (FIQFO) rules have been selected for the deliver-dispatching 

rule. 

- Delivery-Task-First (DTF) rule has been selected for the pickup-

dispatching rule. 

All different levels for control strategies have been summarized in Table 3. We 
used a coding system for referring any kind of strategies using the capital letters 
shown in the columns of Table 3 like [19]. For example, a strategy (or problem) 
T1P1D1L1 refers to a strategy where the task rule is DTF, the pickup-dispatching 
rule is LTIS, the delivery-dispatching rule is SQL and the load-selection rule is 
FIQFO. Meanwhile, in the simulation model, we used NV as a workstation-
initiated approach for assigning the AGVs for the next task. All upper and lower 
bound can be found in Table 4. It should be mention that for stochastic events like 
processing times, we have just varied the mean of variables not variances, since the 
mean of a production facility can be adjusted easily if they lie between specified 
technical limits while changing the variances is much more difficult, because it 
needs more drastic changes like changing the machines or making it more rigid. 
We have used the Enterprise Dynamics V8.0 software as our simulation software. 
All computations were run on a PC with 2.6 GHz CPU and 2GB RAM. The warm-
up period set at 48,000 seconds according to [19] and the results in Figure 2. For 
sampling, we set S=100, so each simulation model replicated 100 times under each 
control strategy. The simulation watch started from 0 to 170,000 seconds as 
stopping time. 
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4. Computational results 

As an example, we set the control strategy to T1P2D1L1. According to the 
proposed algorithm which was explained in section 2, the first replication yield 
3777 as the system throughput. Now the design variables get different values 
according to the uniform distribution function and the model is being replicated for 
99 times (totally 100 times). All simulation results have been shown in Table 5. 
The results for using the mean square method have been summarized in Table 6 
and Table 7. We have used the regression analysis for our calculations which have 
been shown in Table 8. As one may see, the correlation coefficients  are more 

than 0.99 which shows that the linear function has a good quality for fitness. As it 
was shown in Table 9, some design variables have negative and some have positive 
coefficients. For example the fleet size has positive influence on system 
throughput, since it can help the material transportations to be more efficient. So it 
has positive coefficient in all control strategies. Therefore, not only this 
explanation shows the validity of our model but also shows the importance level of 
each design variable in system throughput simultaneously. On the other side, 
increasing the buffer levels at each pickup/delivery point will result in having more 
parts at each workstation. This increase in parts queue will result in having more 
waiting times. Therefore its coefficient will be negative in all control strategies. 
Regarding the processing times we cannot obtain a general comment on their 
effects on system throughput, since each control strategy has its own characteristics 
on dispatching the AGVs through the workstations and on load prioritizing, 
sometimes increasing a process time can increase the system throughput and 
sometimes decreasing a process time can make better ST.   
According to our example which used T1P2D1L1 as the control strategy, the 
optimal solution has been found by using Lingo 8.0 software as follows. Please 
note that we have used instead of , since all products have the same processing 

times at each workstations and b instead of , since we assumed that all 

workstations have the same buffer levels: 
MODEL: 

MAX =1333.136014* n +1863.40407*t1-558.93471*t2 -289.88457*t3 -
1312.1691*t4-1973.1586* t5+2201.0111*t6 -
1945.7133*t7+1164.20195*t8+5045.38866*t9-4535.8802* t10-6.25793497*b-
3508.896; 

3<=n;n<= 7; 

1.45<= t1;t1<=1.55; 
0.95<= t2;t2<=1.05; 
1.95<= t3;t3<=2.05; 
0.95<= t4;t4<=1.05; 
1.95<= t5;t5<=2.05; 
1.95<= t6;t6<=2.05; 
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1.45<= t7;t7<=1.55; 
1.45<= t8;t8<=1.55; 
1.95<=t9:t9<=2.05; 
0.95<=t10;t10<=1.05; 
95<= b;b<= 105;                        
END                                                                                (7) 

The optimal solution for the design variables are as follows: 

 

ST1
*= 10382.76   n*= 7.000000      t1

*= 1.050000      t2
*=1.450000      t3

*=1.950000           

t4
*=0.9500000  t5

*=1.950000     t6
* = 2.050000         t7

* =1.450000        t8
* 

=1.550000            t9
* =2.050000              t10

* = 0.9500000       b*= 95.00000             

The optimal solutions have been shown in Table 10. According to the results, the 

best strategy is the one that AGVs select the workstation with maximum queue 

length (GQL rule) and distributes the load to the workstations with minimum queue 

length at the delivery points. On the other hand, for pickup-dispatching rule, the 

best strategy is maximum queue length and for the delivery-dispatching rule, the 

best strategy is minimum queue length.  The optimal values for this strategy 

including the ST, buffer length and processing times have been shown in Table 10. 

Since the objective function is to maximize the ST, so the strategies which reduces 

the waiting times at workstations will be selected as the best strategy. It’s why 

T1P2D1L1 has been selected as optimal strategy. 

When one compares the results of the current work with the ones obtained in [19], 

it is clear that letting the design variables to be more flexible (around 15-20%), the 

results will be brilliant. The best strategy at our experiments is T1P2D1L1 while it 

had 7th rank in [19]. At the best case (using the best strategy and the best fleet size), 

the ST was 1,050 units in [19] while here at the best case we have 10,244 units, i.e. 

the increase is 10 times more. The comparison chart between the current results 

and the results in [19] has been shown in Figure 3. This fact shows the effect of 

having a little flexibility in fleet size, processing times and buffer levels. Regarding 

the sensitivity analysis, we used the results of the regression coefficients (positive 

and negative effects) for each design variable to specify the changes in upper and 

lower bounds. We allowed the upper and the lower bounds of each design variable 

to be changed 5% to see what will be happened in the optimal solution. The results 

of such analysis have been shown in Table 11.  In this Table, each cell shows the 

ST related to the strategy (the row) and the design variable (the column) after the 

sensitivity analysis while the Throughput column shows the ST before the 

sensitivity analysis. As the table shows, if we decrease the lower bound of the 

processing time at workstation 4 by 5% or if we increase the upper bound of the 

processing time at workstation 8 by 5% then the best control strategy changes to 

T1P2D3L1. In other cases, changing the upper and the lower bounds will not 
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change the results. The best ST is 11,578 when we use T1P2D1L1 by increasing 

5% in the fleet size. According to the results, the fleet size has the most effect on 

the system throughput among all strategies. The last column of this table shows the 

second important variable after the fleet size for each strategy. 

 

5. Conclusions 

In this paper, we have developed a heuristic algorithm by combining simulation, 

linear regression and integer programming methods for the first time as the 

optimization tool for a multiple-load automated guided vehicle system. The first 

contribution of this paper is that we have used several design variables 

simultaneously like fleet size, buffer levels at pickup/delivery points and 

processing times in the optimization process which optimizes the system 

throughput. Therefore the approach is an integrated one which connects material 

handling system to the FMS. The simulations results are being considered as 

samples for the next step which is creating a linear function between the system 

throughput and the design variables by the mean square method. This linear 

function and other functional constraints will form a linear integer model which 

optimizes the system throughput. For comparison purpose, we used the results 

obtained by Azimi et al. [19]. We used the best 10 strategies among 20 ones at their 

work in our model. It was shown that the best control strategy is T1P2D1L1 while 

this control strategy had 7th rank in [19]. The main difference is due to the 

flexibility provided in this paper for design variables. We allowed the design 

variables to be varied around 15% and the results are incredible. The system 

throughput was 1,050 in [19] at the best case while we could increase the ST 10 

times and the ST is 10,244 at the best case here by a little flexibility in design 

variables. It should be mentioned that we just varied the mean of the stochastic 

variables like processing times not their variances. The second contribution is that 

the proposed approach can be used for showing the effect of each variable design 

in ST. Some variables like buffer levels had negative effect and some variables like 

the fleet size had positive effect. The amounts of these effects have been calculated 

also. Finally, it was shown that the fleet size has the maximum effect on the system 

throughput in a FMS environment. This conclusion has been obtained for the first 

time in the literature. Finally, we carried out a sensitivity analysis to show the 

validity range of the obtained results. 
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                                                     Figure 2. The warm-up diagram 

 

Figure 3 . Strategies Ranking 

 

 
     Figure 1. The flow path layout 
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Table 1. The mix-ratio and process sequence of each part 

 
Part Type Mix-Ratio Sequence 

1 0.16 1-3-5-7-9-11-12 
2 0.17 1-2-4-6-8-10-12 
3 0.18 1-4-5-7-9-10-12 
4 0.15 1-3-4-5-9-11-12 
5 0.14 1-2-3-6-8-9-12 
6 0.20 1-5-6-7-10-11-12 

 

Table 2. The processing-time distribution and the production sequence of each product type 
 
Work station Processing time distribution(min) Work station Processing time distribution(min) 

2 N(1,0.1) 7 N(2,0.2) 
3 N(1.5,0.15)       8 N(1.5,0.15) 
4 N(2,0.2) 9 N(1.5,0.15) 

5 N(1,0.1) 10 N(2,0.2) 
6 N(2,0.2) 11 N(1,0.1) 

 

Table 3. The levels of controlling strategies 
 

Levels Tasks Pickup-
Dispatching 

Delivery-
Dispatching 

Load-Selection 

1 DTF GQL SQL FIQFO 

2  SRPT EDT  
3   SD  

4   LIQFO  

5   FIFO  
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Table 4. The upper and the lower bounds of the design variables 
 

Processing Time in stations 
Design 

parameter
s 

AGV 

Number
(n) 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Buffe

r 
capac

ity(b) 

[L,U] [3,7] 
[0.95,1,0

5] 
[1.45,1.55

] 
[1.95,2.

05] 
[0.95,1,

05] 
[1.95,2.0

5] 
[1.95,2.

05] 
[1.45,1.55] 

[1.45,1.
55] 

[1.95,2.
05] 

[0.95,1,
05] 

[95.1
05] 

 
 

            Table 5.Simulation output for T1P2D1L1 Strategy 

 

Fleet 
size 

Processing Time in stations 
Sample 

 
n 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Buffer 
capacity(

b) 
 

Throughput 
(ST) 

1 3 1 1.55 2 1 2 2 1.5 1.5 2 1 105 3,777 

2 6 1.05 1.45 2.05 0.95 2.05 1.95 1.55 1.45 2.05 0.95 100 7,984 

3 5 1 1.55 2 1 2 2.05 1.5 1.45 2.05 1 105 6,566 

4 6 1.05 1.45 2.05 0.95 2.05 1.95 1.55 1.45 2.05 0.95 95 8,023 

5 4 1.05 1.45 2.05 0.95 2.05 1.95 1.55 1.45 2 0.95 95 6,635 

6 4 0.95 1.45 1.95 0.95 2.05 1.95 1.45 1.45 1.95 0.95 95 6,636 

7 5 1 1.45 1.95 1.05 2 2 1.45 1.45 2.05 1.05 100 6,596 

8 3 0.95 1.45 1.95 0.95 2 2 1.45 1.45 2 1 105 3,776 
9 5 0.95 1.45 1.95 0.95 2 2 1.45 1.45 2 1 100 6,599 
10 6 1 1.45 1.95 1.05 2 2 1.45 1.45 2.05 1 105 7,940 
11 6 0.95 1.45 1.95 1.05 2.05 2.05 1.45 1.45 2.05 1 105 7,941 
12 5 1 1.55 1.95 1 2 2.05 1.5 1.45 2.05 1.05 105 6,560 
13 3 1 1.5 2 1 2 2 1.5 1.5 2 1 105 3,796 
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14 4 0.95 1.5 2 1 2 2 1.45 1.55 2 1 105 5,201 
15 5 1.05 1.5 1.95 1 2 2 1.45 1.55 1.95 0.95 95 6,637 
16 6 1.05 1.5 1.95 0.95 2.05 1.95 1.45 1.55 1.95 0.95 95 8,021 
17 6 0.95 1.45 2.05 0.95 2.05 1.95 1.55 1.45 2.05 0.95 95 8,013 
18 5 0.95 1.45 2.05 0.95 2.05 1.95 1.55 1.45 2.05 0.95 100 6,593 

19 4 0.95 1.45 2.05 0.95 1.95 1.95 1.55 1.45 2 0.95 100 5,196 

20 4 1.05 1.55 2.05 0.95 1.95 1.95 1.55 1.45 2 0.95 100 5,200 
21 6 0.97 1.52 1.97 1.03 1.93 2.03 1.53 1.42 1.97 0.93 103 7,965 
22 6 1.03 1.525 2.025 1.025 2.025 2.025 1.525 1.525 2.025 1.025 103 7,958 
23 6 0.98 1.475 1.975 0.975 1.975 1.975 1.475 1.475 1.975 0.975 97 8,009 
24 5 0.98 1.475 1.975 0.975 1.975 2.025 1.525 1.525 2.025 1.025 97 6,618 
25 5 1.03 1.475 1.975 0.975 1.975 2.025 1.525 1.525 1.975 0.975 97 6,619 

 

 

 

Table 6. Regression Statistics 
 

Multiple R 0.99589 

R Square 0.991797 

Adjusted R Square 0.983594 

Standard Error 162.26 

Observations 25 

 
 

Table 7. ANOVA analysis 
 df SS MS F Significance F 

Regression 12 38199090 3183258 120.9062 1.35884E-10 

Residual 12 315939.8 26328.31   

Total 24 38515030    
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Table 8. Regression analysis for strategies 

 

strategies Sum of square Degrees of freedom Mean square F value 
 

T1P2D3L1 49792780.5 12 4149398 115.844552 0.99144162 

T1P2D4D1 51117181.8 12 4259765 19496.0685 0.99994871 

T1P2D5D1 33628353.5 12 2802363 27530.1907 0.99996368 

T1P4D1L1 41382293.9 12 3448524 673.3194 0.99851702 

T1P4D3L1 30671156.5 12 2555930 164.850566 0.99397048 

T1P4D5L1 28916519 12 2409710 268.053445 0.99628327 

T1P4D2L1 33915276.9 12 2826273 857.501947 0.99883518 

T1P2D2D1 47696556.2 12 3974713 61636.7399 0.99998378 

T1P2D1D1 38199090.2 12 3183258 120.906244 0.99179697 

T1P4D4L1 36909354.9 12 3075780 356.695539 0.99720433 

 
 

Table 9.Decision variable coefficients  
 

Processing Time in stations  
strategies 

 

Buffer 
capacit

y 
 
 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Fleet 
size 

 

T1P2D3
L1 

-17.05 210.86 -443.11 755.76 4743.2 -3398.25 1622.96 1767.81 -4912.04 1496.04 -1247.06 
1229.
01 

T1P2D4
D1 

-12.00 26.89 -127.92 -119.07 -539.54 399.56 41.42 -214.21 659.84 175.87 -266.86 
1347.
63 

T1P2D5
D1 

-9.23 -184.67 93.00 5.63 -76.45 111.01 37.73 -71.31 25.60 141.02 -153.43 
1347.
59 

T1P4D1 -11.63 -532.84 1272.1 719.69 354.79 -1119.50 -1002.77 630.85 -978.05 136.50 -252.47 1129.
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T1P4D3
L1 

-4.78 -92.81 1349.3 -654.94 -941.90 -172.44 -729.32 -596.61 -481.58 -152.26 705.06 
1112.
44 

T1P4D5
L1 -12.94 -398.07 680.07 -8.45 -149.09 -169.02 -232.52 649.55 -15.47 360.36 -0.85 

1092.
75 

T1P4D2
L1 -3.12 -274.11 998.04 926.77 1247.4 -1786.73 -737.45 496.00 -1943.96 41.71 -214.67 

1118.
15 

T1P2D2
D1 -8.95 125.75 -12.15 -63.15 -145.11 80.68 -73.63 -154.15 120.88 32.71 -18.93 

1352.
50 

T1P2D1
D1 -6.26 -4535.9 5045.4 1164.20 -1945.7 2201.01 -1973.16 -1312.17 -289.88 -558.93 1863.40 

1333.
14 

T1P4D4
L1 -9.70 -890.83 496.13 715.09 172.46 378.13 18.23 828.77 165.76 556.39 -84.76 

1108.
82 

 

Table 10.Integer linear programming output 

 
Fleet 
size  

Processing Time in stations 
Buffer 

capacity strategies 
 

n* t*1 t*2 t*3 t*4 t*5 t*6 t*7 t*8 t*9 t*10 b* 

Throughput 
(ST) 

Strategi

es Rank 

T1P2D3L1 7 0.95 1.55 1.95 1.05 2.05 1.95 1.55 1.55 1.95 1.05 95 10119.51 2 

T1P2D4D1 7 0.95 1.55 2.05 0.95 2.05 2.05 1.45 1.45 1.95 1.05 95 9362.303 3 

T1P2D5D1 7 0.95 1.55 2.05 0.95 2.05 2.05 1.45 1.55 2.05 0.95 95 9266.027 6 

T1P4D1L1 7 0.95 1.55 1.95 1.05 1.95 1.95 1.55 1.55 2.05 0.95 95 9307.691 4 

T1P4D3L1 7 1.05 1.45 1.95 0.95 1.95 1.95 1.45 1.45 2.05 0.95 95 9197.881 8 

T1P4D5L1 7 0.95 1.55 1.95 1.05 1.95 1.95 1.45 1.45 2.05 0.95 95 9025.201 10 

T1P4D2L1 7 0.95 1.55 1.95 1.05 1.95 1.95 1.55 1.55 2.05 0.95 95 9289.989 5 

T1P2D2D1 7 0.95 1.55 2.05 0.95 1.95 2.05 1.45 1.45 1.95 1.05 95 9259.966 7 

T1P2D1D1 7 1.05 1.45 1.95 0.95 1.95 2.05 1.45 1.55 2.05 0.95 95 10244.44 1 

T1P4D4L1 7 0.95 1.55 2.05 1.05 2.05 2.05 1.55 1.55 2.05 0.95 95 9101.589 9 
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Table 11. Sensitivity analysis of the decision variables 
 

Processing Time in stations (±5%) 

strategies 
 

AGV 
Number 
(+5%) 

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Buffer 
capacity 
 (-5%) 

Throughput(
Z) 

 Important  
decision 
variable 

T1P2D3L1 11349 10182 10194 10365 10208 10201 10289 10357 10157 10142 10131 10205 
10119.51 X4 

T1P2D4D1 10710 9376 9371 9395 9373 9364 9382 9389 9368 9369 9364 9422 
9362.303 

Buffer 
capacity

(Y) 

T1P2D5D1 10614 9274 9273 9267 9270 9268 9272 9270 9266 9271 9275 9312 
9266.027 X11 

T1P4D1L1 10779 9711 9722 9850 9737 9779 9785 9716 9761 9942 9809 9740 
9307.691 X4 

T1P4D3L1 10310 9233 9205 9222 9228 9234 9207 9245 9231 9265 9203 9222 9197.881 X10 

T1P4D5L
1 

10118 9025 9043 9026 9058 9037 9034 9033 9026 9059 9045 9090 9025.201 
Buffer 

capacity
(Y) 

T1P4D2L
1 

10408 9301 9292 9387 9315 9327 9379 9352 9336 9340 9304 9306 9289.989 X4 

T1P2D2D
1 

10612 9261 9262 9266 9268 9264 9264 9267 9263 9261 9267 9305 9259.966 
Buffer 

capacity
(Y) 

T1P2D1D
1 

11578 10338 10306 10272 10310 10343 10355 10342 10303 10497 10471 10275 10244.44 X10 

T1P4D4L
1 

10210 9106 9129 9110 9143 9103 9121 9110 9137 9126 9146 9150 9101.589 
Buffer 

capacity
(Y) 
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