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Abstract. The reliance of farm households on non-farm income is a growing 

area of research but the relationship between multiple household income sources and 

the efficient use of family resources has rarely been examined. The main objective of 

the paper is to contribute to the research stream on the method in Data Envelopment 

Analysis (DEA) and efficiency measurement. Using 2004 data from Ireland, the paper 

develops a new framework to decompose allocative efficiency and bootstrap it for all 

household labour allocations. We also use similar techniques to calculate measures 

for household technical and scale efficiency. In addition, we bootstrap DEA efficiency 

measures and regression models simultaneously to remove the effects of dependence 

among DEA results on the regression estimation. We go on to analyze the 

determinants of household technical, allocative and scale efficiency.  

Key words: DEA, Bootstrap, Farm Household Efficiency, Allocative Efficiency, 

Choice. 
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1. Introduction  

The reliance of farm households on non-farm income is a growing phenomenon 

on Irish farming. From the Agri-vision 2015 report, it was showed that in 2004 about 

40% of farm households have some off-farm income and that almost 30% of the 

farming population are sustainable because of off-farm income (Hennessy, 2004). 

Internationally the issue of overall household efficiency (as opposed to farm level 

efficiency) has been studied by Chavas and Aliber (1993) using a stochastic frontier 

model and by Chavas et al. (2005) using data envelopment analysis (DEA).  Within 

                                                 
1   An earlier daft of this paper was presented at annual conference of Irish Economic 

Association on 29 April 2007. The author thanks Dr. Eoghan Garvey, Dr. Thia Hennessy and 

Dr. Fiona Thorne for their help for earlier draft. We also appreciate the funding from RERC 

Teagasc.    
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Ireland, while work has been carried out on allocation of household labour on and off 

the farm (Brick et. al., 2005; Keeney, 2000; Hennessy 2004; Eoghan 2006), overall 

household efficiency has not heretofore been examined. In this paper, following 

Chavas et al. (2005) we measure overall household efficiency for Irish farms using 

DEA. We will calculate three measures of efficiency – Technical, Allocative and Scale 

efficiency. Among them, we concentrate on allocative efficiency which is used to 

measure farmer’s efficiency in allocating household labour between on-farm work and 

off-farm job. We also focus on a number of areas omitted by Chavas et al. in their 

analysis. Specifically, we consider the effects on estimation of the dependency and 

censoring of the DEA measures, as well as the effects of outliers on the calculation of 

the measures themselves. Using a smoothed bootstrap technique, based on that of 

Simar and Wilson (1998), and an econometric regression, we recover DEA standard 

errors and simultaneously estimate both the specific household efficiency measures 

and their determinants. In previous work (Zhang and Eoghan, 2007) the authors have 

considered the link between the original (non-bootstrapped) DEA estimates and 

stochastic frontier results and found a strong correspondence between the two sets of 

results for (only) technical efficiency. This paper goes beyond that work in its concern 

with DEA efficiency sampling properties and estimation issues. We specially focus on 

the household allocative efficiency only in allocating resources between on and off 

farm choice while exclude the efficiency in allocating resources on farm work. We go 

on to discuss the DEA bootstrapping procedures for technical, scale and allocative 

efficiency. We consider the determinants of efficiency, using simultaneous Tobit 

estimations, and conclude with a brief discussion of the methods and results.  

Consider a farm household with some family members making production and 

labour allocation decisions. The household uses family labour and all other inputs to 

produce farm output. In addition, the household members can also spend their time on 

off-farm activities. Traditionally, the above problems were simplified by measuring 

farm efficiency using a standard farm-level approach. However, this method needs at 

least two assumptions: first, the relationship between work time and income must be 

linear and off-farm income can be interpreted as the wage rate received by the family 

member from off-farm activities. Second, the farm and off-farm technology is non-

joint and the household technology can be expressed completely in terms of the 

separate technologies as on-farm technology and off-farm technology. So, if the 

opportunity cost of family labor is not the wage rate and if farm and off-farm activities 

are part of a joint technology, then measurements produced by the standard farm-level 

approach would be invalid. In this context, a household efficiency framework would 

be preferred (Chavas J.P. R. Petrie and M. Roth, 2005). In this paper, following 

Chavas et. al. (2005) we relax the separability assumptions and prefer the overall 

household efficiency framework to the farm level one and consider farm households 

involved in both farm and off-farm activities characterized by use of both on-farm 

inputs and an off-farm input while producing both on-farm output and off-farm output. 
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Based on the overall household efficiency framework, we want to measure the 

farmer’s efficiency in allocating household labour on and off the farm, which is the 

emphasis of our study. However, traditional allocative efficiency measurement only 

provides the allocative efficiency estimator in allocating all household resources 

among all production activities. In this paper, we will propose a new method to 

decompose the whole allocative efficiency in order to obtain the part of whole 

allocative efficiency for on and off farm choice. 

2. Decomposing allocative efficiency  

To explain the theoretical underpinning for decomposing allocative efficiency 

by data aggregation, we apply output oriented technology  with i(i=1,…,I) 

observations. Suppose that for each DMU i there is M inputs Xi=( Xi1,…, XiM ) +
M

 

and J outputs Yi=( Yi1,…, YiJ ) +
J
 with corresponding output prices Pi=( Pi1,…, 

PiJ ) ++
J
. The output oriented technical efficiency DEA with fully disaggregated 

outputs and inputs can be written as: 
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Specifically, )(/)( , ii

j

ijjii AEE ,YXYP,YX  is economic efficiency or aggregate technical 

and allocative efficiency. Normally, allocative efficiency (AE) is calculated by 

)(/)()( ii

A

iiiiii TEEEAE ,YX,YX,YX ,                                                                     (3) 

when there is no output aggregation. This allocative efficiency calculated from 

economic efficiency and pure technical efficiency can be defined as whole allocative 

efficiency which measures the efficiency in allocating all resources among all fully 
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disaggregated and undividable outputs. But, if the outputs (or inputs in input oriented 

DEA) are not fully disaggregated and estimated technical efficiency is biased, then the 

allocative efficiency calculated by Equation (3) is also biased. We first consider a sub-

vector of output which is linearly aggregated with prices as: 

JjIi
j

j

jijji
ˆ,...,1,

ˆ

1

,ˆ YPC                                                                         (4) 

When some outputs are aggregated using Equation (4), the output oriented technical 

inefficiency DEA can be expressed as: 
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and those obtained from the same measure but if all outputs are aggregated into one 

output variable use Equation(4)  
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The technical efficiency for aggregated data can be computed by
B

ci

B

ciTE /1  

and
C

c

C

cTE /1 . According to Fare and Zelenyuk (2002, 2004), it is obvious that 
B

ci  

and 
C

c  are biased. Therefore, the technical efficiencies computed by them are also 

downwardly biased because the allocative efficiencies are incorporated in the technical 

efficiency scores. As showed by Fare and Zelenyuk (2004), the bias bounds of 

technical efficiency can be given as: 
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Because normal allocative efficiency is calculated by dividing economics efficiency by 

technical efficiency, if economic efficiency is fixed, then we can give: 

)()...()( ,1ˆ,ˆ iiiJijiiciic AEAEAE ,YX,Y,,YC,XC,X
ji,i

                                     (8) 

Banker et al.(2007) propose and proof that the estimated technical efficiency 
C

cTE  

calculated using Equation (6) is identical to economic efficiency )( iiEE ,YX  calculated 
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using Equation (2). Then, )( iC,X icAE is equal to 1, because )()( ii C,XC,X ii

C

c EETE  

when all the outputs are aggregated into one variable. Otherwise, )( iiiAE Y,X  is the 

whole allocative efficiency which is calculated from the pure technical 

efficiency )( iiiTE ,YX . According to the above proofed proposition, it is intuitively to 

know that incorporating the linearly aggregated output using Equation (4) in technical 

efficiency DEA will incorporate the allocative efficiency (relative to the aggregated 

outputs) into the technical efficiency. Here, the incorporated allocative efficiency only 

measures the efficiency in allocating resources among those outputs which are 

aggregated using Equation (4). In other words, the estimated technical efficiencies 

using Equation (5) include the allocative efficiencies for the aggregated outputs in 

Equation (5.3). As a result, the estimated allocative efficiency )...( ,1ˆ,ˆ JijiiciAE ,Y,,YC,X
ji,

 

only measures the efficiency in allocating resources among the outputs in Equation 

(5.2). Here, it should be noted that 
ciAE also includes the allocative efficiency for 

Equation (5.3) as a whole output choice but not the individual outputs aggregated in 

Equation (5.3). Consequently, the whole allocative efficiency is decomposed into two 

components. It is also easy to find the individual allocative 

efficiency )...( ,1ˆ,ˆ JijiiicAE Y,,Y,C,X
ji,

for the aggregated outputs in Equation (5.3) by 

dividing the estimated technical efficiency
B

ciTE by pure technical efficiency
A

iTE . The 

relationship of these allocative efficiency components and technical efficiency can be 

expressed as: 
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and: )(/)...()...( ,1ˆ,ˆ,1ˆ,ˆ ii

A

iJijii
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Above functions can be used in the specific application for measuring allocating 

resources. For example, if we focus on the allocative efficiency component for some 

specific outputs or inputs which we are interested in, we can aggregate all the other 

outputs or inputs and then calculate the allocative efficiency component which we 

want.  

3. Measuring allocative efficiency component for on-farm and off-farm choice 
Since this study is focused on the effects of off-farm job on the household 

efficiency, we mainly concern the efficiency in allocating household resources only 

between on-farm work and off-farm job. As discussed in the earlier section, we can 
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easily decompose the whole allocative efficiency in order to obtain the allocative 

efficiency component only for on-farm and off-farm choice. In this study, we directly 

use the data in which the on-farm allocative choice among different agricultural 

products (such as crop, cattle and sheep) is incorporated into normal technical 

efficiency measurement by aggregating farm products into one output. In this way, the 

allocative efficiency computed through dividing economic efficiency by estimated 

technical efficiency is only the allocative efficiency component for on-farm and off-

farm choice. The logic routine for the above method can be explained easily as follows: 

The individual farmer firstly has to decide whether he will take off-farm job or not and 

if yes, how much time he will input in the off-farm job. Then, he will allocate the 

household resources for on-farm inputs for different farm products. This process, in 

fact, gives two stages in allocating household resources. If we want to know the 

allocative efficiency in the first stage, the above method can satisfy us. In this paper, 

the output-oriented household technical efficiency can be defined as: 

          1/TE=θ (x, fl, wl; y, no)=Max(θ : (x, fl, wl; θy, θno) є X, θ>0)                      (11) 

Here, x refers to on-farm input, fl is on-farm labour time, and wl is off-farm labour 

time. y is on-farm output and no is off-farm income. In general, the household 

technical efficiency is >0 and <=1. When TE=1, the household is operated on the 

production frontier and is technically efficient. It should be noted here that the on-farm 

output is aggregated output and therefore the technical efficiency estimated from the 

above Equation will include allocative efficiency component for on-farm investment.  

Given household technical efficiency, to calculate household allocative efficiency 

for on-farm and off-farm choice we need to maximize profit implying the following 

revenue maximizing problem: 

            R(x, fl, wl; y, no)=Max(y+no : (x, fl, wl; y, no) є X )                                   (12) 

In this function, y is total farm revenue. For the household allocative efficiency 

component, the AE can be defined as 

                              AE(x, fl, wl; y, no)=(y/TE+no/TE)/R                                         (13) 

Here, if AE is 1, indicating that the unit farm household is fully efficient in 

allocating recourses between on-farm and off-farm work. And, if AE is lower than 1, 

representing that efficiency can be improved by relocating labour time between on-

farm and off-farm work. As for scale efficiency, it can be easily computed by dividing 

CRS technical efficiency by VRS technical efficiency scores. Since aggregated data 

only influence the estimated technical efficiency and allocative efficiency, scale 

efficiency will not be affected. 

4. The Bootstrap process for DEA and regression 

To explain the relationship between the result of Data Envelopment Analysis (DEA) 

efficiency scores and factors that determine efficiency, some common regression 

models have been widely used in the literature. However, the problem of the 

dependent relationship among DEA efficiency scores in the DEA-regression analysis 

has been widely ignored. Because the DEA efficiency scores are traditionally treated 

as the response variable in the regression, the basic regression assumption of 



 

 

 

 

 

 

Bootstrapping Decomposed Allocative Efficiency with Farmer’s on and off Farm 

Choice 

 

  

independence within the sample will be violated, as first recognized by Mei and 

Patrick (1999). To overcome the problem of the inherent dependence among the DEA 

efficiency scores they use a procedure involving bootstrapping the DEA model and 

regression analysis simultaneously. However, the method proposed by Mei and Patrick 

only considers the Ordinary Least Square regression as the second-stage analysis and, 

furthermore, applies a common bootstrap procedure which is currently considered as a 

having some weaknesses, as described in Simar and Wilson (1998). Due to the nature 

of efficiency scores ranging from 0 to 1, the Tobit regression model is almost certainly 

a better regression method than OLS. In addition, the smoothed bootstrap procedure 

for DEA, first proposed by Simar and Wilson (1998), is currently treated as a preferred 

method to bootstrap DEA. This paper will use the smoothed bootstrap procedure to 

bootstrap DEA and Tobit regression simultaneously and applies this method to not 

only technical efficiency but also to allocative and scale efficiencies. Simar and 

Wilson (2007) propose that the Tobit model using maximum likelihood (ML) will 

yield biased bootstrap estimators. The reason is that they use the ML estimators to 

smooth the original data. Thus, the ML Tobit or truncated regression estimators will 

influence bootstrapped efficiency estimators directly. Because ML estimators of 

censored or truncated model are sensitive to strict assumptions (such as 

homoscedasticity, normality …), Using the ML estimators of censored or truncated 

model are not the appropriate method in smoothing original data for bootstrap. In this 

study, to circumvent above problems, we still apply the standard smoothing process 

proposed by Simar and Wilson (1998). In addition, Tobit ML regression is applied 

only in the second stage regression, which will not influence the smoothing process 

and therefore the bootstrapped DEA efficiency
2
. The smoothed bootstrap procedure 

assumes that, if the known data generating process (DGP) can consistently estimate the 

unknown data, the known bootstrap distribution can mimic the original unknown 

distribution. By this assumption, the bootstrap process will generate scores that can 

mimic the distributions of the unobserved DGP. (Simar and Wilson 1998, 2000(a), 

2000(b)). Considering the nature of DEA estimations, the smoothed bootstrap 

procedure is based on the DEA estimators themselves by drawing with replacement 

from the original estimates of efficiency score. The steps of smoothed bootstrap 

procedure for bootstrapping both technical efficiency scores and Tobit regression are:

                                                 
2
 In fact, there are at least three econometric methods to regress the estimated results from 

DEA. We choose Tobit regression in this paper as it is widely used. 
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1. Assuming there are n observations in original sample, solve the original DEA model 

and obtain the reciprocal ˆ of technical efficiency. 

2. Estimate the regression model ikiki Vf ),(ˆ/1  by Ordinary Least Square 

(OLS), here i denotes the observations from 1 to N, Vk denotes explanatory variables 

(k=1,…,K), and β is the vector of coefficients; regard the OLS coefficient value as the 

initial value for Tobit Log Likelihood function censored at both ‘0’ and ‘1’; maximize 

the Tobit Log Likelihood function to provide original β coefficients of regression 

model. 

3. Draw a random sample ˆ with replacement from the original estimated sample ˆ . 

4. Smooth the sampled values using the following functions: 

).1ˆ(ˆ2
~

),1ˆ(ˆ~

iiiii

iiiii

hifh

orhifh
                                                                    (14) 

Here, h is a smoothing parameter, and ε is a randomly drawn error term. ‘h’ can be 

obtained by the “normal reference rule”, which calculates h by following function:  

  4

1

)4(1)
2

4
( qpqp N

qp
h                                                                        (15)       

where p is the number of inputs, q equals the number of outputs and N is the number of 

observations in the sample. Furthermore, according to Desli et. al.(2004),  we can also 

choose the value of the window width that minimizes the approximate mean integrated 

square error as follows: h = 0.9AN
-1/5

, where A = min (standard deviation of ˆ , inter-

quartile range of 34.1/ˆ ). The minimum value of ‘h’ from the above two methods is 

used as the smoothing parameter. 

5. Calculate the value  by adjusting the smoothed sample value using the following 

function: 

N
andnwhere

h

n

i

in

i

i

ii

2

12

ˆ

1

2
ˆ

2

)ˆˆ(

ˆ,ˆ:

),
~

(

ˆ
1

1

                                                                  (16) 

Here, 
2
ˆˆ  is the sample variance of original estimated efficiency scores, and ˆ  is the 

sample mean of them. 

6. Obtain the new outputs by adjusting the original outputs using the ratio ii
ˆ  

7. Solve the DEA model again using the adjusted outputs to obtain final bootstrapped 

i
  as the reciprocal of efficiency scores. 
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8. If there are some infeasible observations in final DEA results, restart this procedure 

from step 4 again to make sure that there is no invalid and infeasible bootstrapped 

DEA results. 

9. For each bootstrap sample S, estimate the regression model using each bootstrapped 

DEA result as the response variable by OLS and Tobit methods to yield S sets of 

coefficients. 

10. Repeat steps 3-9 S times to provide S sets of valid estimates. Although this 

procedure will only provide S sets of valid estimated scores, the real bootstrap times is 

far higher than that due to some infeasible bootstrap results (The procedure may restart 

from step 4 again at step 8).  

This smoothed bootstrap procedure is a little different from that of Simar and 

Wilson 1998, 2000(a), 2000(b) in that our step 8 is used to drop infeasible results that 

emerge in bootstrapping process. In this analysis, S is denoted as 1000, and therefore 

1000 valid samples will be generated for each observation. 

After the desired samples are generated, the bias of the original estimate of ˆ  can 

be calculated as follows:  

SwhereE

EBias

S

s

siis

iisi

1

)(

ˆ)(ˆ





                                                                                          (17) 

Therefore, the bias-corrected estimator of θ can be expressed as:   

iii Bias ˆˆ~
                                                                                                         (18) 

Here, 
i

~
 is the final bias-corrected theta which can be directly used to calculate 

bias-corrected technical efficiency estimators.  

The standard error (SE) of theta estimators can be calculated by:  

1

))((
1

2

S

E

SE

S

s

issi

i



                                                                                          (19) 

To estimate confidence intervals for the θ, the unknown distribution of ii
ˆ  can 

also be approximated by the known distribution of
ii
ˆ . Then, 

1)ˆ(Pr abob ii
 can be mimicked by 

1)ˆ(Pr abob ii
  conditioned on the original data. According to 

Simar and Wilson (1999), the algebraic value of ii
ˆ  should first be sorted, then 

deleting (α/2)*100% of the elements at either end of this sorted array, and finally 
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letting –b
*
α and –a

*
α equal to the endpoints of the sorted array. In this paper, we choose 

the confidence interval from 5% to 95%. 

As a result, it is obtained that: 

1)ˆ(Pr abob ii
                                                                   (20) 

Finally, the 1- α confident interval of Theta can be approximated as: 

ba iii
ˆˆ                                                                                            (21) 

As for the regression model, the standard error, )ˆ( sikse , will be estimated by 

the sample standard deviation of the bootstrap replications of ski
ˆ . The standard error 

of β coefficients can be expressed as: 

S

where

K
se

S

s
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S

s
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2

ˆ
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)ˆ(

)ˆ(                                                                                         (22) 

Here, there are ‘kth’ )ˆ( sikse  representing the standard errors for ‘K’ 

explanatory variables. ‘i’ still indicates observations, and S is the number of bootstrap 

times. Based on the bootstrap standard errors, a t-test will be used to test the hypothesis 

of Tobit coefficients 

It should be noted here that for the DEA model the (θ) is bootstrapped, and 

therefore the standard error and confidence interval was estimated for θ. But, the 

response variable of the regression model is technical efficiency which also equals to 

the reciprocal of theta.  

With regard to scale efficiency, the scale efficiency score can be directly calculated 

through dividing CRS-TE (constant return to scale technical efficiency) by VRS-TE 

(variable return to scale technical efficiency).    

Based on the available VRS-TE bootstrap method, we just need to solve an 

additional CRS-TE DEA in step 7, and in step 8 we should ensure that there is no 

infeasible result in both the VRE-TE result and CRS-TE result. Furthermore, for scale 

efficiency, the OLS and Tobit regression should regress on scale efficiency scores. In 

addition, because the scale efficiency is estimated through dividing CRS TE by VRS 

TE, we bootstrap the scale efficiency score directly instead of its reciprocal. 

However, for allocative efficiency (AE), because it is calculated from dividing 

economic efficiency (EE) by technical efficiency, the bootstrap procedure needs to be 

displayed in detail. 
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1. Solve several original DEA models to obtain the heta of economic efficiency EE
ˆ , 

and theta of allocative efficiency
AE
ˆ  (the VRS-TE scores can use the estimated 

original technical efficiency scores in the first procedure directly). Here, EE
ˆ

 

and AE
ˆ also are the reciprocals of EE and AE. 

2. Estimate the regression model iAEkiAEkiAE Vf ),(ˆ/1  by OLS and Tobit, 

again i denotes the observations from 1 to N, Vk denotes explanatory variables 

(k=1,…,K), and β is coefficients, but they are all based on allocative efficiency. 

3. Draw a random sample 
EE
ˆ with replacement from the original estimated 

sample EE
ˆ . 

4. Smooth the sampled values from EE
ˆ using the same method as in the TE 

procedure step 4. 

5. Calculate the value EE  by adjusting the smoothed sample value using the same 

function in the TE procedure step 5.  

6. Obtain the new outputs by adjusting the original outputs using the ratio EEiEEi
ˆ . 

7. Solve several DEA models using the adjusted outputs to obtain final bootstrapped 

Theta of economic efficiency EEi
 , Theta of new technical efficiency TEi


, and finally 

calculate allocative efficiency and its reciprocal (Theta) through dividing EEi


by TEi


.  

8. If there are some infeasible observations in DEA results for economic efficiency and 

new technical efficiency, restart this procedure from step 4 again until there is no 

infeasible bootstrapped DEA results for both EE and new TE. 

9. For each bootstrap sample S, estimate the regression model for allocative efficiency 

by OLS and Tobit methods to yield S sets of coefficients. 

10. Repeat steps 3-9 S times to provide S sets of valid estimates.  

This procedure is different from the first procedure for technical efficiency in that 

it uses the Theta of economic efficiency to adjust original outputs and therefore yields 

not only economic efficiency but also the new technical efficiency for each bootstrap. 

This not only provides the sensitivity analysis of DEA results but also gives 

appropriate standard errors of DEA results, even though the efficiency scores 

computed from the DEA are dependent. 
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5. Data and variables 

All the data comes from the Irish National Farm Survey managed by Teagasc (The 

Irish Agriculture and Food Development Authority). It is cross-sectional data for 2004. 

The number of observations of farms with on and off-farm labour for 2004 is 606 

farms. The farm output chosen is total farm output. In addition, the subsidies which are 

directly related to the production will also be included in the total farm output (Cattle 

and dairy subsidies, sheep subsidies, and crop subsidies). The off-farm output is off-

farm income. The farm input includes farm utilized land, labour input, total direct costs. 

The off-farm input is only off-farm work time. Table 1 depicts the descriptive statistics 

of the farm and off-farm variables. On-farm labor input is measured in standard man 

days. Costs and farm output are measured in euro. The other output variable, off-farm 

work income, ranges from 1 to 16. Here, off-farm income was measured by ordered 

code in the farm survey. 1 indicated the income range from 0 to €4000, two 

represented the income range from €4000 to €8000, and so on. We combined the 

income code of householder and that of spouse together. Farm land is measured in 

hectares. The variables used in the Tobit estimation of the determinants of technical, 

allocative and scale efficiency are described in the next section.  

 

Table 1. Descriptive statistics of  farm variables 

Variable Obs Mean Std. Dev. Min Max 

Labor days 606 277.8883 233.8486 4.49 1370.5 

Farmland 606 48.42373 38.83952 4.09 371.1 

Total costs 606 23860.41 26694.39 689 230092.9 

Off-farm work hours 606 1740.647 939.3244 25 4368 

Off-farm work income 606 6.529703 3.423537 1 16 

Farm output 606 72971.87 75882.25 3951 590424 

Table 2.   Descriptive Statistics of original and bootstrapped efficiency scores 

  

No. of  

Obs. 
Minimum Maximum Mean 

Std. 

Deviation 

Original technical 

efficiency 
606 0.199 1 0.733 0.171 

Average for bootstrapped 

technical efficiency 
606 0.59 1 0.691 0.085 

Bias-corrected technical 

efficiency 
606 0.116 1 0.764 0.238 

Original allocative 

efficiency 
606 0.243 1 0.88 0.175 

Average for bootstrapped 

allocative efficiency 
606 0.631 1 0.974 0.051 

Bias-corrected allocative 

efficiency 
606 0.144 1 0.83 0.226 

Original scale efficiency 606 0.446 1 0.941 0.097 

Average for bootstrapped 

scale efficiency 
606 0.317 0.999 0.931 0.087 

Bias-corrected scale 

efficiency 
606 0.371 1 0.94 0.119 
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6. Results for bootstrap DEA 

Table2 depicts the summary statistics of calculated efficiencies. The original 

technical efficiency
3
 values range from 0.2 to 1 with a mean of 0.733; the average 

technical efficiency for 1000 bootstrap samples ranges from 0.596 to 1 with a mean of 

0.691, while the bias-corrected technical efficiency has the widest range, ranging from 

0.116 to 1 with a mean of 0.764. The original allocative efficiency ranges from 0.243 

to 1 with a mean at 0.88; the average allocative efficiency changes from 0.63 to 1 with 

a mean at 0.97; and the bias-corrected allocative efficiency ranges from 0.144 to 1 with 

a mean at 0.83. The original scale efficiency ranges from 0.441 to 1 with a mean at 

0.94; the average scale efficiency ranges from 0.317 to 0.999 with a mean at 0.93, and 

the bias-corrected scale efficiency ranges from 0.371 to 1 with a mean at 0.94.  

 

 
Table3 depicts the frequency distribution of the estimated original and bias-

corrected efficiency scores for 606 Irish farm families. As for the original TE, besides 

69 fully technically efficient farm households whose TEs are 1, the calculated technical 

efficiencies concentrate on the range from 0.6 to 0.8, in which there are 253 

households occupying about 42% of total farm households. The number of farm 

households with ‘1’ bias-corrected TE scores are high, up to 218 and occupying 36% 

of all observations. For some families the differences in the original technical 

                                                 
3 Please note, all the technical efficiency estimators include allocative efficiency component for 

on-farm allocation; All the allocative efficiency estimators are only allocative efficiency 

component for allocating household labour between on and off farm.  

Table 3. The frequency distribution of technical efficiency, allocative efficiency, and scale efficiency 

 Original TE Bias-corrected TE Original AE Bias-corrected AE Original SE Bias-corrected SE 

 Frequency Percent Frequency Percent Frequency Percent Frequency Percent Frequency Percent Frequency Percent 

0.1-0.2 1.00 0.17 4.00 0.66   7.00 1.16     

0.2-0.3 2.00 0.33 19.00 3.14 6.00 0.99 22.00 3.63     

0.3-0.4 9.00 1.49 32.00 5.28 11.00 1.82 23.00 3.80   2.00 0.33 

0.4-0.5 44.00 7.26 47.00 7.76 23.00 3.80 26.00 4.29 3.00 0.50 9.00 1.49 

0.5-0.6 85.00 14.03 71.00 11.72 21.00 3.47 28.00 4.62 9.00 1.49 11.00 1.82 

0.6-0.7 120.00 19.80 68.00 11.22 31.00 5.12 31.00 5.12 12.00 1.98 19.00 3.14 

0.7-0.8 133.00 21.95 53.00 8.75 41.00 6.77 35.00 5.78 32.00 5.28 26.00 4.29 

0.8-0.9 87.00 14.36 49.00 8.09 64.00 10.56 81.00 13.37 54.00 8.91 43.00 7.10 

0.9-1.0) 56.00 9.24 45.00 7.43 360.00 59.41 201.00 33.17 461.00 76.07 218.00 35.97 

1.0 69.00 11.39 218.00 35.97 49.00 8.09 152.00 25.08 35.00 5.78 278.00 45.87 

Total 606.00 100.00 606.00 100.00 606.00 100.00 606.00 100.00 606.00 100.00 606.00 100.00 
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efficiency might come from the random error which can not be fully captured by DEA 

framework. The estimated scores of bias-corrected allocative efficiencies, ranging from 

0.1 to 1.0, are spread more widely than those of original allocative efficiency ranging 

from 0.2 to 1.0. As for the bias-corrected allocative efficiency scores, the number of 

farm families located in the range from 0.9 to 1.0 is reduced to 201, far lower than the 

number of farm families (360 households) in the same range for the original allocative 

efficiency. Meanwhile, compared with the original allocative efficiency scores, the 

numbers of observations in the range from 0.8 to 0.9 (81 households) and the fully 

efficient observations (152 households) have increased. In Table3, the frequency 

distribution of the original scale efficiency is also listed. The bias-corrected scale 

efficiency scores are spread more evenly than the original ones. The number of farm 

families located in the range from 0.9 to 1.0 is 218 which is less than the half of the 

number of farm families (461 households) in the same range for the original scale 

efficiency. On the other hand, the numbers of fully efficient farm households is high up 

to 278. Again, this is likely due to the random error which is taken into account by 

bootstrapped results but ignored by the original DEA model. The frequency table 

overall shows the greater range of the bias corrected measures; but also shows a greater 

frequency of “1” values for bias-corrected technical and allocative efficiency, 

compared to the original values, and fewer values between .9 and 1. A change of this 

nature is to be expected if, indeed, the effect of outliers on original efficiency measures 

is reduced by bootstrapping. Figures 1-3 below go on to show the relationship between 

the three bias-corrected efficiency measures and 3 of the key household inputs – on-

farm labour, farm size and off-farm labour. 

 
Figure 1: Bias-corrected Efficiency and On-farm Labor Days (Lowess Curve) 
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Figure 2: Bias-corrected Efficiency and Farm Size (Lowess Curve) 

 

Figure 3: Bias-corrected Efficiency and Off-farm Work Hours (Lowess Curve) 
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Figure 1 depicts the Lowess curve for bias-corrected efficiencies and on-farm 

labour. Bias-corrected technical efficiency increases with the increase of on-farm 

labour inputs in any range. But, in the range from 100 to about 900 labour days, it 

increases very slowly. Allocative efficiency, on the other hand, decreases in the range 

from 0 to 100 on-farm labour days; after that it increases in the range from 100 to 900 

labour days, and finally decreases again. There are about 438 farm families (occupying 

72% of total farm families) located in the range in which the bias-corrected allocative 

efficiency is increasing with on-farm days. For very high numbers of on-farm days 

(above 900), scale efficiency falls. There are only 16 farm families in this range.  

Figure 2 depicts the Lowess curve for bias-corrected efficiencies and farm size. 

For farms from 0 to about 20 hectares, the bias-corrected technical and allocative 

efficiency show a large increase (about 101 farm families are located in this range 

occupying about 15% of all farm households). However, from 20 to about 34 hectares, 

the bias-corrected technical and allocative efficiencies decrease (there are 144 farm 

families occupying 24% of total households in this range.). And then, both efficiencies 

tend to rise. This is an important result, suggesting households in very small or very 

large farms are likely to be more efficient, overall, than households on the medium 

sized (model) Irish farm. The bias-corrected scale efficiency does not change clearly 

with the increase in farm size in any range. 

Figure 3 depicts the Lowess curve for bias-corrected efficiencies and off-farm 

working hours. Bias-corrected scale and allocative efficiencies do not change clearly 

with the increase in off-farm working hours. However, the bias-corrected technical 

efficiency changes greatly with the increase of off-farm work hours. From 0 to about 

1200 annual off-farm work hours (up to about one fairly active part-time off-farm job), 

the bias-corrected technical efficiency has a large increase (about 200 farm families are 

located in this range occupying about 33% of all farm households). However, from 

1200 to about 3000 off-farm work hours (from between one part-time and close to two 

full-time jobs), the bias-corrected technical efficiency decreases sharply (there are 337 

farm families occupying 56% of total households in this range.). The bias-corrected 

technical efficiency increases again with the increase of off-farm work hours beyond 

the three thousand mark (both partners working full-time off-farm).  This “cubic” 

nature of this result echoes the previous result for farm size. 

7. Regression variables and results 

Considering the latent factors influencing inefficiency, the censored Tobit model 

is used with 1 as an upper bound and is estimated simultaneously with the efficiency 

measures. As opposed to the variables used in measuring efficiency, the explanatory 

variables here (in table 4 below) reflect idiosyncratic factors that may influence the 

performance of farm households and therefore the efficiency scores.  
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Table 4 . The descriptive statistics of variables for Tobit models 

Types Variables Mean St. Dev. 

Subsidies and 

Pensions 

Subsidies for land not in use (€) 17.61 30.30 

Environmental subsidies (€) 
(including disadvantage area payment, rural environmental 

protection scheme, and environmentally sensitive area grants) 

42.15 39.21 

Householder pension (=1 if householder has pension) 0.04 0.24 

Pension of others (the number of other house members who 

have pension) 0.23 0.57 

General 

Long term loan (Amounts) (€) 82.58 370.80 

Medium term loan (Amounts) (€) 87.19 233.26 

Insurance (€) 9.61 12.97 

Full time on farm (the number of house members working 

on farm full-time excluding householder and spouse) 0.05 0.22 

Part time on farm (the number of house members working 

on farm part-time excluding householder and spouse) 0.16 0.44 

Soil code (the soil code for soil quality, lower number 

represents better soil quality) 2.90 1.39 

Land rented (acs.) 
0.27 0.55 

Consultant fees (Fees spent on consultants) (€) 7.03 6.66 

Teagasc fees (Fees spent on Teagasc advices) 
(Teagasc is the Irish national body providing integrated research, 

advisory and training services to agriculture and the food 
industry.) (€) 

1.82 2.71 

Marriage 

status 

Married (=1 if householder is married) 0.86 0.35 

Separated (=1  if householder is separated) 0.01 0.09 

Widow (=1  if householder is widowed) 0.02 0.13 

Demographic 

data 

Gender (=1  if householder is male) 0.97 0.16 

Householder age 47.65 9.62 

Number of House members 4.16 1.67 

Pre-school (the number of  house members in the age of pre-

school) 
0.24 0.56 

Primary-edu (the number of  house members receiving  

primary education) 
0.57 0.93 

Second-edu (the number of  house members receiving  

second-level education) 
0.50 0.79 

Third-edu (the number of  house members receiving  third-

level education) 
0.30 0.60 

Farm types 

Farm-specialist dairy 0.27 0.44 

Farm- mixed dairy 0.10 0.31 

Farm- cattle rearing 0.26 0.44 

Farm- sheep 0.11 0.32 

Farm- tillage 0.08 0.28 
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Table 5.1.  Bootstrap Tobit results 

 Technical    efficiency Allocative    efficiency Scale    efficiency 

variables Original Coef. Mean of 

bootstrap Coef. 

Original Coef. Mean of 

bootstrap Coef. 

Original Coef. Mean of 

bootstrap Coef. 

Constant 0.67090*** 0.7109*** 0.7972*** 0.9616*** 0.9232*** 0.9772*** 

Subsidies for land 

not in use 0.00097*** -0.00003 0.0012*** 0.00021** 0.00045** 0.00019 

Environmental 

subsides -0.00035 -0.00032 -0.0003*** 0.00008 -0.0002** -0.00008 

Householder 

pension 0.09713*** 0.05844* 0.0436*** 0.00223 -0.00034 -0.0021 

Pension of other -0.01139 0.00281 0.0144*** 0.00279 0.0138*** 0.00914** 

Long term loan 0.00001 0.00002 -0.00001** -0.00001 0.00000 0.00000 

Medium term loan 0.00007* 0.00004 0.00001 -0.00001 0.00001 -0.00001 

Insurance 0.00140 0.00029 0.0014*** 0.00015 0.00071 0.00033 

Full time 0.01698 0.01165 0.00759 -0.00392 0.00928 0.00599 

Part time -0.01842 -0.01581 0.0134*** 0.00525* 0.00450 0.00797 

Soil code -0.00815 0.00166 -0.019*** -0.0042** -0.00333* -0.00059 

Land rented 0.03179* 0.02079 0.0256*** 0.00501 0.01812** 0.00340 

Consult fees 0.00209 0.00017 0.0020*** 0.00054** 0.00046 0.00009 

Teagasc fees 0.00289 -0.00053 0.0016*** -0.00003 0.0029*** 0.0034*** 

Married 0.01925 -0.02178 -0.0621*** -0.00333 -0.01761 0.00201 

Separated 0.05180 0.01000 0.1379*** 0.0351*** 0.00788 -0.02075 

Widow -0.00023 0.02309 0.0639*** 0.01991** 0.01880 0.01032 

Male Gender -0.00747 0.00039 0.0373*** 0.00440 -0.00938 -0.02469* 

Householder age 0.00043 0.00216** 0.0024*** 0.00034* 0.0011*** -0.00023 

No. house members 0.01243 -0.00332 -0.00244 0.00027 -0.007** -0.00518* 

Pre-school 0.00061 0.00451 -0.00804** -0.00099 0.00111 -0.00139 

Primary-edu -0.00198 0.00507 0.0102*** 0.00202 0.00661** 0.00533 

Second-edu -0.01184 0.00083 -0.0210*** -0.0061** 0.00285 0.00109 

Third-edu -0.00240 0.00439 0.00701** -0.00235 0.0148*** 0.0126*** 

Farm-specialist 

dairy -0.01673 -0.07753** 0.1058*** 0.01354 0.0393*** 0.01827 

Farm- mixed dairy -0.07967** -0.0757** 0.01981** -0.00077 0.01647 0.00706 

Farm- cattle rearing -0.06322** -0.03390 -0.0698*** -0.01198* -0.028*** -0.0228** 

Farm- sheep -0.01149 -0.04441 -0.0387*** -0.00791 -0.0255** -0.0259** 

Farm- tillage 0.02097 -0.06554* 0.00923 0.00119 -0.00592 -0.02535* 

Note: * significant at 10% level, ** significant at 5% level, *** significant at 1% level.  S.E. in this table is the standard 

error over bootstrap samples. 
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In arriving at table 5 (including table 5.1 and 5.2), we follow the procedure 

recommended by Mei Xue and Harker (1999), who recommend reporting, for 

efficiency reasons, the mean of the bootstrap coefficients and the use of only the 

Table 5.2  S.E. of  Bootstrapping Tobit results 

variables Technical    

efficiency 

Allocative    

efficiency 

Scale    

efficiency 

Constant 0.08010 0.01898 0.02395 

Subsidies for land not 

in use 0.00032 0.00008 0.00022 

Environmental 

subsides 0.00024 0.00008 0.00010 

Householder pension 0.03400 0.00535 0.01108 

Pension of other 0.01574 0.00289 0.00416 

Long term loan 0.00002 0.00000 0.00001 

Medium term loan 0.00004 0.00001 0.00001 

Insurance 0.00093 0.00011 0.00052 

Full time 0.03365 0.00729 0.00976 

Part time 0.01755 0.00295 0.00512 

Soil code 0.00585 0.00189 0.00205 

Land rented 0.01712 0.00367 0.00921 

Consult fees 0.00157 0.00027 0.00090 

Teagasc fees 0.00283 0.00054 0.00088 

Married 0.02946 0.00740 0.01238 

Separated 0.07781 0.01297 0.03686 

Widow 0.06538 0.00933 0.01516 

Male Gender 0.04853 0.00977 0.01257 

Householder age 0.00100 0.00020 0.00039 

No. house members 0.00946 0.00176 0.0028 

Pre-school 0.01584 0.00318 0.00383 

Primary-edu 0.01197 0.00219 0.00323 

Second-edu 0.01253 0.00303 0.00364 

Third-edu 0.01589 0.00323 0.00427 

Farm-specialist dairy 0.03634 0.01020 0.01342 

Farm- mixed dairy 0.03372 0.00852 0.01190 

Farm- cattle rearing 0.02563 0.00675 0.00881 

Farm- sheep 0.02955 0.00665 0.01061 

Farm- tillage 0.03520 0.00688 0.01293 
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standard errors calculated from the bootstrap. They also recommend including the 

original coefficient for comparison purposes. We do this, but hardly comment further 

on the original coefficients except to say that there are a good deal fewer significant 

variables when the mean bootstrapped coefficients are used and that the majority of the 

results with the original coefficients also seem quite plausible. Looking at the 

coefficients for technical efficiency, and controlling always for farm type, only the 

pension and age variables are significant, suggesting technical efficiency increases 

with householder’s age. With regard to allocative efficiency, age is again significantly 

positive, indicating elder farmers probably have higher efficiency in allocating their 

labour between on and off farm. Having children at secondary school is – as might be 

expected – negative. Paying a farming or financial consultant, having better soil and 

having more non-production related subsidies are all positive.  The first and last of 

these are as expected, but the positive soil quality result was expected rather for the 

technical efficiency results. Finally, the more other family members there are (apart 

from the main couple) helping part-time on the farm, then – as might be expected – 

allocative efficiency is also higher.  

With regard to scale efficiency, having a female household head improves it (there 

are very few female household heads). Scale efficiency is also associated with smaller 

households, with those with children in third level education, with those taking 

Teagasc advice and with those where some household member (not the head) has 

pension money coming in. From these results, there are certainly points worth making: 

age is associated with greater efficiency, “unearned” money coming into the house 

(pensions or non-production related subsidies) is also associated with greater efficiency. 

Seeking consultants’ or an extension service’s advice also seems to be associated with 

improved efficiency. 

8. Conclusion 

One of main contributions of this paper is the development of a framework for 

decomposing allocative efficiency according to our study preference. In addition, the 

method for bootstrapping efficiency and Tobit regressions simultaneously is proposed, 

based on adjustments to existing techniques. We outline the procedure to smoothly 

bootstrap technical efficiency and Tobit regression, and then extend it to scale 

efficiency and, specifically, to allocative efficiency. Using these techniques, overall 

household level efficiency including both on-farm and off-farm work is estimated. 

From the estimated results of technical efficiency (VRS), Irish farm families appear to 

have great potential to increase their household revenue through improving technical 

efficiency on both farm work and off-farm work. From the estimated allocative 

efficiency components, Irish farm households also have some room to improve their 

allocation of household labour inputs in both farm work and off-farm work. Scale 

efficiency also has some small potential to be increased.  

From the Lowess curve for bias-corrected efficiencies an interesting issue comes 

from a clear cubic curve relationship between off-farm work hours and the bias-

corrected technical efficiency. From 0 to about 1200 off-farm work hours, the bias-
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corrected technical efficiency increases with the increase of off-farm work hours. 

However, from 1200 to about 3000 off-farm work hours, the bias-corrected technical 

efficiency decreases. And then, the bias-corrected technical efficiency increases again 

with the increase of off-farm work hours. Thus, those doing very little or a lot off the 

farm seem to have improved household efficiency while doing a moderate amount off 

the farm (roughly equivalent to one full-time or two part-time jobs off-farm) seem to 

have reduced it. A similar, though less striking, relationship exists between farm size 

and technical efficiency. As for the bias-corrected allocative efficiency, there seems to 

be a clear relationship with farm size (again, cubic) and on-farm labour days (generally 

positive, though declining at first). 

In going on to look at the determinants of variations in different kinds of household 

efficiency, we have had some, albeit limited, success. The variable “rented land” is an 

interesting case. It is shown to have significant effects on all original efficiencies but in 

no case is it significant for the mean bootstrapped results. The lack of significance in 

the bootstrapped case is due either to the removal of dependence in the dependent 

variable, or to the removal of outliers, or both, occasioned by the bootstrapping 

procedure. More positively, consultants have significant and positive effects on 

allocative efficiency components. Teagasc advices impact scale efficiency. Some other 

variables, such as having other family members working on the farm or having 

children in secondary school, have clear effects on allocative efficiency measuring 

only on and off farm choice. Age improves both technical efficiency and allocative 

efficiency component. Obviously, further research and comparisons are needed to 

improve the reliability and quality of these results, but this paper takes a first step in 

decomposing allocative efficiency and using DEA to analyze farm household 

efficiency in Ireland in a way that attempts to overcome most of the perceived 

weaknesses of DEA as a tool to accomplish this task. The research is new also in its 

emphasis on the household, not only the farm. The separability assumptions needed to 

separate on and off-farm efficiency analysis (primarily - linearity of off-farm returns; 

non-jointness of production) are quite strong and the investigation of the applicability 

of these assumptions is an area worth concentrating on in the immediate future. 
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