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Abstract. The paper presents the theoretical and numerical aspects of
Expected Maximization algorithm for the particular case of estimating
the mixture probability distribution parameters, respectively, for the
case of incomplete data estimates, as well as for the particular case of
unsupervised statistical learning. The probabilistic context of algorithm
is defined and analyzed, its logic elements are deduced and rendered and
the particular form of algorithm is presented in case of Gaussian condi-
tioned distributions. Starting from the basic ideas of EM algorithm, it is
justified the equivalence between the maximization of likelihood function
logarithm and the maximization of conditioned entropy of prior distri-
butions of statistical subpopulations of a mixture probability distribu-
tion, entropy estimated according to posterior distributions of these sta-
tistical subpopulations. A numerical illustration of using EM algorithm
for unsupervised statistical learning processes, for the Gaussian mixture
distributions case is also presented. 
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I. Introduction

EM Algorithm (Expected Maximization) is a powerful algorithm of estimating the
probability distribution parameters with the nature of certain mixture probability distri-
butions, respectively, of estimating the probability distribution parameters including la-
tent or unobservable random variables. The estimate of probability distribution parame-
ters of this kind is known under the name of incomplete data estimate. The estimate pro-
blems of this type are frequently met in the context of statistical learning theory, especia-
lly, in the context of pattern recognition problems. In other words, EM algorithm is an
iterative procedure useful to determine Maximum Likelihood estimators (ML), under the
conditions of certain implicit information, represented by hidden or missing data. As it
is known, getting maximum likelihood estimators is based on the idea of determining the



Gheorghe Ruxanda, Ion Smeureanu

estimators such as the available information to get an as high as possible likelihood, with
respect to the values of these estimators. 

EM algorithm was proposed for the first time in 1977 year by Dempster, Laird and
Rubin, at the same time with the publication of the paper Maximum Likelihood from
Incomplete Data via the EM Algorithm, although the idea of this approach has appeared
earlier in an unpublished paper of Stuart Russel. Afterwards, the concerns related to EM
algorithm and to its possible applications have been largely expanded, this leading to the
appearance of numerous variants of this algorithm (incremental, batch, online etc.). 

EM algorithm can be used to solve numerous and various categories of problems,
such as those related to: estimation of incomplete data models or which include unobser-
ved variables, cluster analysis and unsupervised pattern recognition, estimation of mixture
probability distribution parameters, estimation of dynamic system states, estimation of
Markov chain model parameters with hidden information, Data Mining analyses, compu-
ter vision, reconditioning the multi frame super resolution images etc.

In most cases, where EM algorithm is used, the available information (sample of
observations) is considered to come from a statistical population  structured under the

form of a number of distinct statistical subpopulations  without known a

priori, which are the subpopulation, the observations come from. As statistical populati-
on  is made of several subpopulations, its probability distribution is a mixture proba-

bility distribution of subpopulations  and its probability density is defined

as a convex combination. The parameters to be estimated in this case are represented by
the parameters of probability distributions of the K subpopulations, respectively, the
expected values, variances and covariances of these subpopulations, as well as by the
“weights” of each subpopulation in the total of statistical population . These “weights”

are the coefficients of convex combination defining the density of mixture probability
distribution. The information associated to parameters of “weight” type is the missing or
hidden information. The latent character of this information results from the fact that,
although each observation comes from a certain statistical subpopulation, although it
contains information about the respective subpopulation, this information is not ”visible“,
but it appears only in an implicit form, as we do not know exactly which is the sub-
population, the respective observation, comes from. Any observation coming from
mixture probability distributions contains the “finger print ” of particular distributions it
comes from, but at latent level and in a hidden manner. 

The mixture probability distribution is a probabilistic model associated to a statis-
tical (total) population, structured under the form of a finite or infinite number of statisti-
cal distinct populations. The probability distributions which form a mixture, i.e. the
probability distributions of statistical subpopulations, are called elements or components
of mixture. In case when the probability distributions of subpopulations are continuous,
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the mixture probability density is a convex combination of probability densities of sub-
populations, i.e. a linear combination with non-negative coefficients, where the coeffi-
cients sum to 1. The coefficients of convex combination of probability densities of sub-
populations are called mixture probability weights. 

As for the mixture probability distributions, we mention two types of problems. The
first problem is related to deducing the properties of statistical (total) population on the
basis of studying the properties of subpopulations. The second problem refers to the
inferences of the properties of statistical subpopulations, on the basis of the available
observations of the total statistical population, without knowing the subpopulations these
observations come from. 

One of the important approaches related directly to inference is the identification of
the origin subpopulation of available observations, i.e. the subpopulations which are the
origin of observations, approach related to the field of unsupervised learning or cluster
analysis. For instance, if we consider the problem of recognizing the hand-writing
characters, each character is represented by a matrix of size  where each matrix

element is equivalent to a pixel with a value equal to 0 or 1, value depending on the color
of the respective pixel, for instance white or black. This means that the total number of
characteristics of each subpopulation is  i.e. these characteristics can be

represented by a dimensional vector, whose elements are of binary type. Each

character is a statistical subpopulation, so that, if the total number of characters is K, we
shall have a number of K -dimensional statistical subpopulations and the mixture

probability will have a number of components equal to the total number of different
characters. Each characteristic (pixel) has a probability distribution of Bernoulli type, so
that, for each character, we have a number of - probability distributions.

A mixture probability distribution can be regarded as being the probability distri-
bution of a new random variable, whose values are the values of other random variables,
chosen randomly, from a given set of random variables, each random variable of this set,
being associated to a certain statistical subpopulation. The random mechanism according
to which the values of this new random variable are generated, can be considered as a
random mechanism working in two stages: in the first stage, it is randomly chosen a
random variable of the given set of random variables, and in the second stage, the value
of this variable is randomly generated. Practically, in the first stage, a statistical sub-
population is randomly chosen, and in the second stage, an observation of this statistical
subpopulation is randomly chosen. It follows that in case of this random mixed mecha-
nism, two types of probability distributions are involved: the probability distribution
associated to the first stage and defined besides the given set of random variables, respec-
tively, the probability distributions of random variables of this set. The probability distri-
bution associated to the first stage is the prior distribution of subpopulations and the
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probability distributions associated to the second stage are the conditioned distributions
or the distributions of subpopulations.

Intuitively, the statistical subpopulations constituting the mixture probability distri-
butions get the nature of certain causes or nature states, and the observations generated
from mixture probability distributions get the nature of certain effects determined by the
respective causes, but without knowing which is the “contribution” of each cause to pro-
ducing these effects. So, an observation generated by mixture probability distributions
gets the nature of an observed effect and the main objective of statistical inference is to
probabilistically evaluate the extend to which, the causes contribute to producing the res-
pective effect, i.e. to identify the subpopulation, the respective observation comes from.
 The most appropriate approach, in this context, is the Bayesian approach, where the
fundamental part in probabilistically evaluating the contributions of causes to producing
a certain effect, is played by the so – called posterior probabilities of causes. The estimate
of posterior probabilities of causes or of nature states assumes to know two categories of
information: prior probabilities of causes or nature states, probabilities which, in case
of mixture probability distributions, are represented by mixture weights i.e. probabilities
with which a certain effect in each nature states occurs, called also observed probabilities.
In case of mixture probability distributions, the prior probabilities are represented by
mixture weights, and the observed probabilities are represented by the probabilities of
observations, at the level of each subpopulation and can be determined only if the
probability laws of each subpopulation are known.

As for the nature of mixture probability distributions, we have to specify that the
mixture probability distributions must not be confounded with the distribution of a
weighted sum of random variables, which abstract the statistical subpopulations, as, in
this latter case, the random mechanism of generating the values of random sum type
variable is a mechanism working into a single stage: the values of random sum type
variables directly result from the values taken by random variables of the respective sum.
Moreover, if the probability distributions of random sum type variables are unimodal
distributions, then, the probability distribution of weighted sum of random variables is
also of unimodal type and directly results from the simultaneous probability law of the
respective random variables. In exchange, the probability density of mixture probability
distributions is defined via a convex combination of probability densities of the statistical
subpopulations, which constitute the mixture, and the mixture probability distribution is
always a multimodal distribution. The previous renditions of mixture probability distri-
butions are valid also for the case where instead of random variables, vectors of random
variables are taken into consideration.

In order to use EM algorithm, with a view to solving the problems related to the
estimate of parameters of mixture probability distributions, it is necessary to know the
nature of probability distributions of statistical subpopulations  distributions
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which get the nature of certain conditioned probability distributions. In cases when the
characteristics of subpopulations are unknown, the probability densities of these sub-
populations can be approximated by using kernel type techniques or average and shifted
histograms type techniques. But, in many cases, when the probability laws of sub-
populations are unknown, we can assume that these distributions are normal distributions.

Each iteration of EM algorithm includes two distinct computational stages, respecti-
vely, Expected stage and Maximization stage. According to available observations, in the
first stage (E) of each iteration, the unknown values of the variable or of latent variables
are estimated, and consequently, mixture distribution weights are estimated. The unknown
values of latent variables are estimated on the basis of the estimates produced by
algorithm for posterior probabilities of each sample observation. The process of obtaining
estimates for posterior probabilities of observations has the nature of a conditional
average (expected) process, where available observations and approximated values of
parameters at each iteration are used. The randomly generated values are used as initial
values for the weights of mixture probability distributions and for the parameters of the
distributions conditioned by probability. In the second (M) stage of each iteration, the
estimates of probability distribution parameters of subpopulations (expected values,
variances and covariances) are calculated, according to the maximization of likelihood
function associated to sample observations, under the assumption that the values of latent
variables and of mixture weights are those ones estimated in previous (E) stage.

The value resulted from the likelihood function estimation, with respect to the
estimated values of parameters at any iteration, always represents an increment, in
comparison with the value of this function at previous iteration, such that, the algorithm
convergence is provided. The EM type estimating procedure goes on with the execution
of new and new iterations, each iteration assuming the alternative execution of the two
stages E and M, till the increment of likelihood function value becomes insignificant. 

Bearing in mind the fact that the specificity of its functionality, the EM algorithm
can be considered as being an unsupervised statistical learning algorithm, with a nature
similar to that of partitioning algorithm, for which, the number of classes is a prior
known. The EM algorithm can be used in order to determine the forms classification, on
the basis of approximating the posterior probabilities resulted from the execution of each
iteration of this algorithm.

II. Statistical – mathematical Fundamentals of EM Algorithm 
Generally speaking, the problem of estimating parameters by using the maximum

likelihood method can be defined as follows: if  is a statistical n–dimensional populati-

on, whose (intrinsic) attributes or characteristics are represented by means of the
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 A likelihood function defined in this manner is called likelihood function with complete observations. 1

 Even in the case of general estimating problem by means of maximum likelihood method, this problem2

can be conveniently converted, by including an artificial random variable, of latent type, that to enable to
estimate parameters by using EM algorithm. This is a very interesting conversion, as EM algorithm
provides a simpler, elegant and efficient estimating procedure, in comparison with the classical method of
maximum likelihood, especially in cases when maximum conditions can not be easily ascertained.

n–dimensional random vector  and whose probability law is represented by means of

n–dimensional probability density:
,

where  is the parameters vector of probability distribution, and  is the set of parameter

values, then the maximum likelihood estimator for parameters vector  is obtained as a

solution of a maximization problem of likelihood function associated to the available
observations. Hence, if we have an observations sample of T volume, extracted from the
n–dimensional statistical population  and made of n – dimensional observations

 assumed to be independent, then, the likelihood function associated to

this sample is defined under the form : 1

,

i.e. it is a function depending on the (unknown) parameters vector , whose values are

conditioned by the sample observations. The maximum likelihood estimator for para-
meters vector  will be: 

, 

and the procedure of obtaining the sample is called the maximum likelihood method.
In order to simplify and bearing in mind the strictly monotonous increasing property

of function , the problem of estimating parameters by using the maximum likelihood

method is frequently formulated under the name of natural logarithm of likelihood
function. In these conditions, the function to be maximized is under the form:

.

We remark that, although the sample observations are assumed to be independent,
this hypothesis enabling to express the likelihood function as a product of probability
densities, these observations can not be assumed to be also identically distributed, as their
origin lies in different statistical subpopulations.

Unlike the classical method of maximum likelihood, the method based on EM algo-
rithm is an iterative type procedure, that can be used for certain problems of special type,
problems including one or more particular random variables, which are random unobser-
vable variables, called latent variables .2

We shall further formulate an estimating problem of this type, by assuming that the
statistical population  is not homogeneous, but structured under the form of a number
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of K statistical subpopulations  for which, the probability density of random

vector  abstracting the characteristics of statistical subpopulation  is:

.

Such a statistical population is under the form  and the

probability distribution associated to this statistical population is called mixture
probability distribution. In this case, the probability density of a random vector  has

the nature of an unconditioned total probability density, and according to total probability
formulae, the (total) unconditioned probability density of random vector  is of the

form:

,

where  is the vector of mixture weights and  and  are the sets of values for

the two categories of parameters. As it can be noticed, the set of parameters of mixture
probability distributions include both the weights  and the parameter vectors

 for the K probability distributions of the respective mixture.

The probability distribution of statistical population  is a mixture probability distri-

bution of subpopulations and has a K – modal nature, that is to say that the probability
density graph for this distribution has a number of K local maxima. In the figure below,
the probability densities of two statistical subpopulations and the probability density
corresponding to a mixture of these probability distributions are graphically illustrate.

Figure 1: Graphs of probability densities for two statistical

subpopulations and their mixture

Being defined the probability density of mixture probability distribution, the probabi-
lity density of a random vector  can be considered as being a conditioned probabili-

ty density, respectively, the density of vector  mentioning the fact that , i.e.:

.

As for the applications of the pattern recognition field, the representation of sub-
populations can be made in two manners: by means of values of discrete type random
variables, whose values usually represent subpopulation indexes, representation known
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under the name of natural coding, respectively, by means of certain vectors of binary ran-
dom variables, each vector being associated to a subpopulation, representation known
under the name of complete disjunctive coding. In what follows, we shall specify the im-
plications of the two types of representation for problems solved by using EM algorithm.

a. Natural coding case
As long as the randomly generated observations of statistical population  belong

to any of subpopulations , by a certain probability, we can mention a new

probability distribution, defined besides the K subpopulations and abstracted by means
of a new (scalar) random variable of discrete type  having a directly latent unobserva-

ble nature. We shall assume that this random variable has the probability distribution:

In Bayesian language, the probability distribution of random variable  is the prior

distribution of statistical subpopulations  . As random variable  has a un-

observable nature, then, when we refer to its values, we consider an hypothetical context.
Nevertheless, EM algorithm enables to approximate the values of this variable.

We shall denote by  the set of values of random variable  and

by  the probability as random variable  to take value , i.e.

, what means that function  defines the mass probabilities for the

values of random variable  . For instance, for a particular value  of random

variable , we shall have .

As it can be noticed, the set of possible values of random variable  is perfectly

known, this set representing indexes of classes. Though, random variable  has a latent,

unobservable nature, as its values are not known (there are hidden) at the level of obser-
vations coming from statistical population - , the origin subpopulation being completely
unknown for any such observation. Anyway, the EM algorithm enables to estimate the
values of this variable for each sample observation.

If we know how its probability distribution is specified, the random variable  has

the nature of an identifier of statistical subpopulation, reason for which, it can be called

subpopulation variable. Thus, for any observation  coming from statistical population

, to know the value which random variable  could take is equivalent to knowing

which is the subpopulation, the respective observation comes from. 
If we know both the weights of mixture probability distribution and the probability

distributions of statistical subpopulations , the probability distribution of

random vector  has the nature of a marginal distribution and is completely known. 
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The random variable  can be regarded as defining an additional size of statistical

population  so that this variable appears as a (n+1)–dimensional population. We shall

denote by  the random vector of the n+1 characteristics of statistical population ,

respectively, . As random vector 

contains information about the statistical subpopulations only under an implicit, latent
form, by means of the values taken by random variables integrating it, this random vector
can be considered as being the generic representation of an incomplete observation.
Unlike it, the random vector  containing under an explicit form, also the (estimated)

information referring to the origin subpopulation of random vector , it can be

considered as being a generic representation of a complete information. That is why, data
referring to random vector  are called incomplete data, while those data referring to

vector  are called complete data. We shall assume that the probability

distribution of (n+1)–dimensional random vector  is described by the probability

density:
,

where  and  are the parameter vectors of this probability distribution.

In the context of (n+1)–dimensional distribution of random vector 

there are of interest, from the perspective of EM algorithm logic, two types of conditioned
distributions: probability distribution of random vector  conditioned by the values of

random variable , respectively, the probability distribution of random variable 

conditioned by the values of random vector . We shall further deduce the general form

of probability densities for these two types of conditioned probability distribution.
For (n+1)-dimensional distribution of random vector  , the K possible

values of random variable  can be considered as representing conditioning values or

levels for random vector . If we use the probabilistic conditioning concepts, the proba-

bility density of random vector  can be written as follows:

. 

On the other side, if we know the fact that random variable  has taken a certain

particular value  the probability density of random vector , being given the value

 of random variable  is exactly the probability density of random vector  at the

level of the k-th statistical subpopulation , respectively:

,

as via value  of random variable , the classification of random vector  to sub-

population  is univocally identified. As can be noticed, the conditioned probability den-

sity of random vector , being given the fact that , does not depend only on the
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parameters of probability distribution of subpopulation . Moreover, the density of

marginal (total, unconditioned) probability of random vector  can be obtained by

summing, with respect to the possible values of probability distribution of random
variable  , i.e.:

,

whence, considering the fact that , it follows

that the (total, unconditioned) marginal probability density of random vector  is:

.

This result outlines the fact that, really, the (unconditioned) probability density of
random vector , is a convex combination of probability densities of the K probability

distributions of statistical subpopulations , combination with coefficients

represented by probabilities associated to the values of latent random variable , i.e.:

.

b. Complet disjunctive coding case
In order to identify the K subpopulations, a binary random vector is used, so that,

instead of latent random variable , used in case of natural coding, we have a latent

random vector, respectively, the random vector , whose

(hypothetical) realization will be denoted by . The random variables of

random vector  are binary variables which verify the following conditions:

.

Unlike random vector , that is the vector of characteristics (attributes, sizes) of

total population  with an observable nature, vector  is of an unobservable nature,

for this reason, being called, hidden or latent vector. 
According to the way of its definition, random vector  has also the nature of an

identifier of subpopulations, constructed on the basis of a complete disjunctive coding of
classes, and its hypothetical realizations are represented by the finite set of K–dimensio-

nal unit vectors , with the following form:
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,  , ...,  ,...,   

i.e. there is a total number of K such distinct vectors of realizations. We shall denote

by  the probability of random vector  to take value , namely, .

This means that the k-th random variable of random vector , i.e. random variable ,

takes value 1, respectively . As the random variables of random vector 

are binary, and their values are conversely exclusive, i.e., if one of these variables takes
value 1, all the other variables take value 0, probability as random vector  to take a

particular value w is:

.

In pattern recognition theory, to determine the classification of a realizations vector
x, that is, in fact, a pattern to a certain class , assume to define a membership function

under the form:

.

We shall now consider the (n+K)–dimensional random vector  and we

shall denote by  its probability density and by  the conditioned

probability density of ( sub)vector , being given that . We shall yield:

.

For instance, in case when , case equivalent to the situation where random

variable  takes value 1, the conditioned density  represents exactly the

probability density of subpopulation , respectively:

,

case where the conditioned probability density  can be written under the parti-

cular form:

,

and the (marginal) unconditioned probability density of random (sub)vector , can be

obtained via summing the probability density  according to the possible

values of random vector , respectively: 
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.

 It follows that the (unconditioned) marginal density probability of random vector
 has the nature of a mixture of K probability distribution, which are the probability

distributions of subpopulations :

As can be noticed, we have found a form to express the marginal (unconditioned)
density probability of random vector , identical to that one obtained in case of natural

coding. Further on, we shall use the first method of coding the subpopulations, based on
the use of latent random variable .

Also with respect to the (n+1)–dimensional distribution of vector , we

can define the conditioned probability distribution of random variable , being given

. We shall denote by  the probability density of this distribution, i.e.: 

.

On the basis of this conditioned density, the probability density of random vector
 can be written:

, 

whence, it follow that: 

,

relation that is a consequence of Bayes formulae. In fact, density  has the

nature of a posterior probability density. This conditioned probability density can be also
used to express the (total, unconditioned) marginal probability density of random vector

, respectively:

.

As we can notice, the unconditioned probability density of random vector  is a

function depending both on the parameters vector , and on the parameters vector of the

K probability distributions of subpopulations , with the condition that all

these parameters to be estimated. 
In order to construct the likelihood function, we shall assume that we have the n–di-

mensional sample of incomplete observations , extracted from statistical

population , for which the selection model is represented by the list of random  (inde-

pendents) vectors . The likelihood function associated to this sample is

defined as:
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,

and the maximum likelihood estimators for parameter vectors  and  will be:

.

As a result of the fact that the likelihood function is expressed in terms of logarithm
of a sum, to analytically obtain a solution of this problem, is rather difficult, but not impo-
ssible, so, the single possibility of solving is the numerical one, by using an iterative pro-
cedure. Moreover, the maximization of likelihood function in its previous form, rises also
other difficulties. A first difficulty is related to the possibility of the existence of certain
singularities for certain probability distributions, as centered distributions. Thus, if the
estimation for expected values vector of a probability distribution of subpopulations

comes very close to one of the T observations, i.e. if  then, the variance of the res-

pective probability distribution is very close to 0, and the value of subpopulation
probability density comes close to infinite, which means that the value of likelihood
function comes close to infinite. Another difficulty is related to the fact that for a mixture
of K probability distributions, the problem of maximizing the likelihood function has a
number of  solutions. Fortunately, these  solutions are perfectly equivalent, they

being different only from the point of view of the order in which the estimated values on
subpopulations are shown. 

The most elegant modality of numerically solving the previous maximization
problem is provided by EM algorithm, which is a special iterative numerical procedure
with a high efficiency. Further on, we shall describe in detail the logic of this algorithm.

III. Inducing EM algorithm
The main idea of EM algorithm is that of maximizing the likelihood function

, in a simplified and indirect manner, based on constructing a special auxiliary

function, easily to be maximized. In fact, this manner consists in expressing the likelihood
function in terms of posterior probabilities of available observations and in determining
the weights of mixture probability distributions on the basis of approximations calculated
for posterior probabilities. The next sentence synthesizes the fundamental idea of EM
algorithm and can be considered as proving the entire essence of EM algorithm.

Propozition: Estimator vectors  which are solutions of maximum

problem  are also solutions of maximum problem

, where:

.
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Proof. We shall assume that after the q-th iteration of EM algorithm, the values of parameter

estimations are represented by vectors  and , following to find, at next iteration, the

estimates  so that, these ones to determine a maximum increment of the likelihood

function logarithm, with respect to iteration q. Under this assumption,  have the nature

of certain random variables whose values depending on known values  and , so that we

can consider them as random variables conditioned by form . If we shall denote

increase the likelihood function by:

,

we shall yield:

Now expressing the marginal density  as the density of a mixture probability

distribution, we shall get:

,

whence, on the basis of a simple trick, we have:

.

According to Bayes formulae:

,

we shall have:

  

On the other side, as:

    and     ,

the sum representing the logarithm argument can be considered as a convex combination

having these coefficients, so that, according to Jensen inequality, we shall have:
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As  is the probability density of subpopulation , it does not depend

on parameters vector , the previous inequality can be rewritten under the form:

           

We shall denote:

The problem is to determine vectors  and  which provide the largest increment of

the value of likelihood function logarithm at next iteration. As:

,

does not depend on  and , then  and  are solutions of the next maximization

problem:

            . #

If we shall consider the results of previous proof, then the log likelihood function
verifies the following condition:

.

If we shall denote:

,

we shall have . For , we have:
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i.e. at q iteration, the value of log likelihood function is identical to the value of function
. At the same time, the lower bound of the original value of likelihood function can

be calculated as follows:

.

It follows that at q+1 iteration, the estimators of maximum likelihood for parameters
of mixture probability distributions can be determined as solutions of the next extreme
problem:

As can be noticed, the second sum of the previous relation defines the expected value
of , this expectation being made according to posterior probability distribution of

random variable W, such as this distribution is approximated for each observation. This
means that: 

The previous relation suggests the following computational strategy, specific to each
iteration of EM algorithm: (a) in E stage of each q iteration, the expected values of prior

probability  for all observations  are calculated; (b) these ex-

pected values are used to estimate weights vector  of mixture probability distributions;

(c) weights vector  is used in M stage for maximizing the sum of expected values of

all observations, with a view to obtaining approximation  for parameters vector . 

On the other hand, for each observation , the second sum of the previous relation

defines the (negative) prior distribution cross entropy of random variable W or the
(negative) prior distribution cross entropy of subpopulations , entropy

evaluated with respect to the posterior distribution probabilities of variable W.
Consequently, the problem of maximizing the likelihood function is equivalent to the

problem of minimizing the sum of prior distribution cross entropies of latent variable W
for all available observations, such as these entropies are evaluated at the level of each
iteration, respectively:
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Within each q iteration, EM algorithm firstly estimates approximation  of weight

vector , using approximation  from the previous q-1 iteration, where after it uses

vector  in order to calculate the current approximation . Under these conditions,

when vector  is calculated, the conditioned probability density  does not

depend anymore on , it being exactly the probability density of subpopulation  , with

parameters vector , namely:

,

and the above inequality will become:

In this way, the maximization problem of log likelihood function is more simplified,
as follows:

In the box below, stages and iterations of EM algorithm, corresponding to a certain
general case, where probability distributions of subpopulations are certain distributions,
are described.
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Expected Maximization Algorithm (EM)
 I. Initialization:  set  and randomly generates start values for parameters vectors, res-

pectively ; 

II. q iteration: 

• E stage: • based on estimations  from previous iteration, compute

(posterior probabilities and mixture weights):

      

      ;

• M stage: • using the weights vector , calculated in E stage, compute the maximum

likelihood estimate for parameters vector , as solution of maxim problem:

      ;

III. Stop criterion:

• evaluation likelihood function:

;

• if:

   ,

  then: set  and goto II; 

  otherwise: Stop. 

From the view point of EM algorithm convergence, numerical applications and
tests have proved a relatively high convergence speed of this algorithm. Really, from the
perspective of a certain q iteration, within the EM algorithm, approximations 

and  for parameter vectors  and  are determined at q+1 iteration, such as to lead

to a maximum increment of likelihood function value, respectively:

,

whence, as , it follows that:

,

i.e. the likelihood function is non-decreasing along iterations. 
Unfortunately, as happens in case of most nonlinear optimization algorithms, the

final optimizations for parameters  and  can have the nature of some local minima or

even worse, the nature of some saddle type points. However, in most applications, EM
algorithm proved a very high robustness.
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IV. Using EM Algorithm to Unsupervised Pattern Recognition
Assuming that the number of classes (clusters) is known, the logic according to

which, the EM algorithm iterates, can be successfully “ borrowed” , in order to develop
an unsupervised statistical learning algorithm or a cluster analysis. Such an algorithm
has the nature of partitioning algorithms, as K – means algorithm is and it is based on
iterative approximation of posterior probabilities of available forms for unsupervised
learning process. Approximations of posterior probabilities finally resulted, after the
execution of algorithm, are used to assigning forms on classes, according to rule: a form
is assigned to that cluster where the largest posterior probability is noticed.

The unsupervised statistical learning algorithm developed on the basis of EM algo-
rithm supposes the iterative construction of clusters, corresponding to iterations of EM
algorithm, on the basis of using approximations of posterior probabilities obtained at each
iteration of EM algorithm. Such an algorithm is distinguished from the partitioning algo-
rithms, from three points of view: setting certain seeds of clusters is not required; an
effective re-assignation of forms at each iteration is not required, but only one final assig-
nation , after the algorithm stops. We shall use , instead of the distances among the forms
which have to assigned to clusters and cluster centroids the approximations of posterior
probabilities of these forms, namely, a form will be assigned to that cluster with the
largest posterior probability. In fact, the reciprocal posterior probabilities of classes,
calculated for each form, can be considered as representing the distances between the
respective form and clusters. 

A great advantage of EM statistical learning algorithm is the fact that the obtained
results, after the algorithm execution, can be also used to make predictions, so that, such
a program can have also valences, which are specific only to unsupervised learning
algorithm. Although the unsupervised learning algorithm developed on the basis EM
algorithm is very performing, it has the disadvantage that, in comparison with other
partitioning algorithms, supposes to know the probability laws of classes, i.e. the
conditioned probability distributions. 

In order to illustrate the modality of using EM algorithm as an unsupervised
statistical learning algorithm, we shall consider that the latent random variable  via the

value taken for a certain form, respectively, one of the values , the class

(cluster) , the respective form belongs to, is identified. At the same time, we shall assume
that we have a set T of forms with unknown classification , and we have to determine the
classification of these forms to classes. In this context, the forms are supposed to
represent a number of T realizations of random vector , represented by n-dimensional

vectors , organized under the so called observation matrix:

.
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If  is the conditioned probability density of random vector , being given

the value of random variable , then, the marginal distribution of random vector 

is described by density:

,

where the k-th term of the previous sum can be rendered as an absolute contribution of
class   to the value of probability density in the point represented by vector x. This

absolute contribution is, in fact, a non-normalized posterior distribution. Each observation

vector  can be associated to one of the values  of random

variable , depending on the highest value of this absolute contribution. So, if:

,

then, vector  can be associated to class . The previous associating rule can be

considered as a decision rule regarding the “origin” of form , respectively:

As can be noticed, term   is exactly the posterior probability numerator for

subpopulation  estimated for the observed vector . The probabilities 

have the nature of prior probabilities (historical information) and the products of the form

 have the nature of non-normalized posterior pro-

babilities, obtained after observing realization . The posterior probabilities for the

observation  are:

.

In terms of posterior probabilities, the rule of setting the “origin” of generic

observation  can be formulated in the following terms:

In statistical learning theory, posterior probabilities  are known also

under the generic name of responsibilities.
In the next box, the stages of using EM algorithm as unsupervised statistical learning

algorithm are concisely described.
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EM Algorithm for Unsupervised Statistical Learning 

Stage I: Executes EM algorithm using the existing data, referring to the values
taken by the characteristics of forms and which are the object of classes assignment
and retain the approximations resulted for posterior probabilities, i.e.:

;

Stage II: Uses the approximations  of posterior probabilities in order to assign

all the T forms, according to rule:

.

 

V. Numerical Exemplification for Gaussian Distributions
The most important problem related to mixture probability distributions is that of

estimating the parameters of these mixtures, respectively, the problem of estimating
coefficients  of mixture and estimating parameters of probability densities

, respectively, their expected values, variances and covariances.

Generically, the problem is to model data represented by observations 

coming from a mixture probability distribution, respectively, to identify the probabilistic
model for the random mechanism of mixture probability distribution type, which genera-
tes observations, without knowing the coefficients value of the respective mixture. Consi-
dering the nature of mixture probability distribution, the most appropriate modality to
estimating their parameters is that one based on EM algorithm (Expected Maximization).

We shall assume that we have a sample of n-dimensional (independent) observa-

tions , that the observations are generated from normally distributed

subpopulations and are independent, i.e. the likelihood functions has the following form:

,

where:

,

are the probability distributions of subpopulations, and  is the vector of ex-

pected values, respectively, the covariance matrix corresponding to subpopulation . We

shall denote:
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In this context, the problem is to obtain the estimates for mixture probability

parameters, respectively  , so that the T observations

sample to be as representative as possible (higher likelihood), what is equivalent to
maximizing the likelihood function, with respect to the respective parameters. 

Assuming that values of parameters  are known, the

maximum likelihood estimates for parameters  are obtained as solutions of the

next conditioned extreme problem:

wherefore, the Lagrangean function is of the form:

.

From the maximum conditions of Lagrangean function, according to parameters
, it follows that estimations for parameters  are:

.

Supposing as known the weights , by annulling the partial derivatives of

log likelihood function , according to vec-

tors of avarages and covariance matrices of subpopulations, it follows that maximum
likelihood estimates for them, are:

where:

.

As we notice, there is a certain “vicious circle” (circularity) given by the fact that the
estimates for mixture probability distribution parameters, inclusively, the estimates for
mixture probability distribution coefficients, depend on parameters , i.e. they

can be never estimated. For this reason, in order to estimate the mixture probability
density parameters, we use the iterative procedure called EM algorithm, that eliminates
the mentioned vicious circle.



Usupervised Learning with Expected Maximization Algorithm

Hereinafter, we shall present a modality of software implementation of EM algo-
rithm and we shall numerically exemplify how this algorithm is running, for the case
where the probability distributions of subpopulations are of Gaussian type.

We shall consider the case of a statistical population -, structured on three statis-
tical subpopulations , with weights represented by vector ,

whose probability laws are of Gaussian type, with vectors of expected values:

,  ,  ,

respectively, with covariance matrices:

,  ,  .

As it is known, the vector of expected values of mixture probability distribution (of
statistical population -) is defined as a convex combination of statistical subpopulation
expected values, respectively:

,

and the covariance matrix of mixture probability, defined as the sum between the common
covariance matrix, calculated as a convex combination of subpopulation covariance
matrices, namely:

,

and the covariance matrix of conditioned expected values, i.e.:

.

In the figures bellow, the probability density of the mixture of the three probability
distributions and the isoprobanility curves for this density are graphically represented. 

 
Figure 2: Graph of the probability density

function for Gaussien mixture distribution

Figure 3: Contour plot (iso-probabilities) for

Gaussien mixture distribution

In order to use the EM algorithm for estimating the mixture parameters of the three
probability distributions, we have randomly generated a number of  of statistical
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population -, observations which we shall use for algorithm running. The next figure
illustrates the graphic representation of the 1000 observations.

Figure 4: Graph of the sample from Gaussien

mixture distribution (1000 obs.)

The mixture distribution parameters are represented by the weights vector and by the

parameters vector of the three mixture distribution, respectively, the vector 

and the parameters vector . As start values for parameter

vectors  and , randomly generated values of uniform distribution have been used. The

solution representing the estimates of the two parameter vectors has been obtained in a
number of 32 iterations, and the values obtained at each iteration for maximized
likelihood function, for its increments and for mixture weights, are given in the next table:

           Table 1

Iteration

1 -5949.88 239.24800 0.370612 0.316577 0.312811

2 -5853.49 96.38680 0.361588 0.326097 0.312315

3 -5819.25 34.24240 0.346887 0.344603 0.308510

4 -5788.86 30.38620 0.331885 0.362969 0.305146

5 -5769.34 19.52180 0.320630 0.374674 0.304696

...

14 -5703.48 4.21714 0.275952 0.386679 0.337369

...

21 -5530.47 63.11210 0.332168 0.370092 0.29774

...

25 -5469.60 5.37763 0.379999 0.359323 0.260677

...

30 -5463.93 0.07270 0.391535 0.357548 0.250918

31 -5463.90 0.02344 0.391907 0.357442 0.250651

32 -5463.89 0.00755 0.392123 0.357372 0.250505
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The values of optimized likelihood function corresponding to each of the 32
iterations are illustrated in Figure 5.

Figure 5: Graph of the log likelihood function

The limit error used in order to formulate the stop criterion was  and the

estimates for mixture parameters, respectively, weights vector, subpopulation expected
valuesvectors and subpopulation covariance matrices are: 

,   ,  ,  ;

,  ,  .

According to these estimates, the estimates of expected values vector and of
covariance matrix at population level - are the following:

As can be noticed, the estimates obtained by using the EM algorithm for mixture
parameters of the three Gaussian probability distributions come very close to the true
values of parameters. 

The EM algorithm, via the provided results, can be also used as an unsupervised lear-
ning algorithm, respectively, as a cluster analysis algorithm. Thus, according to the appro-
ximations obtained after the last iteration for posterior probabilities, the 1000 observa-
tions can be assigned on the three classes (subpopulations), depending on the class where-
fore the highest posterior probability is obtained. As the 1000 observations have been ge-
nerated on subpopulations, we know the real classification of observations, so that we can
compare the real classification with the assignations based on posterior probabilities. The
matrix of classification  and the corresponding matrix of relative frequencies are:
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;    .

We can notice that, from the 1000 observations, the classification of the 983
observations has been correctly predicted , i.e. a very high percentage of classification
correctness, respectively 98.30%.

The software implementation of the EM algorithm described above was made in
Mathematica language. The code corresponding to this implementation, used to achieve
the previously described application, is found in the next box.

Source Code of the EM Algorithm Implementation

 {On[General::stop], maxiter=100, delt=10,eps=10^(-Round[8.0/Log[Sqrt[T]]]), iter=1};

 {w1=Array[0,T], w2=Array[0,T], w3=Array[0,T], w=Array[0,T], wn1=Array[0,T], wn2=Array[0,T], wn3=Array[0,T], wn=Array[0,T]};

 {fverosim=Array[0,maxiter], med=Mean[Esant], cov=Covariance[Esant]};

 {repe=MultinormalDistribution[med,cov]; v[x_]=PDF[repe,x]; fverosimold=1.05 func {sum from {t=1} to T}Log[v[Esant[[t]]]];};

 {lix=0.65 med[[1]], lsx=1.30 med[[1]], liy=0.65 med[[2]], lsy=1.30 med[[2]]};

 {li11=0.65 cov[[1,1]], ls11=1.30 cov[[1,1]], li12=0.65 cov[[1,2]], ls12=1.30 cov[[1,2]], li22=0.65 cov[[2,2]], ls22=1.30 cov[[2,2]]};

 {m1={RandomReal[{lix,lsx}], RandomReal[{liy,lsy}]}, s1={{RandomReal[{li11,ls11}], a=RandomReal[{li12,ls12}]},

{a,RandomReal[{li22,ls22}]}}};

 {m2={RandomReal[{lix,lsx}], RandomReal[{liy,lsy}]}, s2={{RandomReal[{li11,ls11}], a=RandomReal[{li12,ls12}]},

{a,RandomReal[{li22,ls22}]}}};

 {m3={RandomReal[{lix,lsx}], RandomReal[{liy,lsy}]}, s3={{RandomReal[{li11,ls11}], a=RandomReal[{li12,ls12}]},{a,RandomReal[{li22,ls22}]}}};

 {q1=RandomReal[{0.25,0.50}], q2=RandomReal[{0.15,0.50}], q3=1-(q1+q2)};

 While[(delt>eps && iter <= maxiter),

   {repe1=MultinormalDistribution[m1,s1]; repe2=MultinormalDistribution[m2,s2]; repe3=MultinormalDistribution[m3,s3];}; 

   {v1[x_]=PDF[repe1,x]; v2[x_]=PDF[repe2,x]; v3[x_]=PDF[repe3,x];};

   For[i=1,i<=T,

    {obs=Esant[[i]]; wn[[i]]=q1 v1[obs]+q2 v2[obs]+q3 v3[obs];};

    {wn1[[i]]=q1 v1[obs]/wn[[i]]; wn2[[i]]=q2 v2[obs]/wn[[i]]; wn3[[i]]=q3 v3[obs]/wn[[i]];};

    i++;

    ];

   {sumwn1= wn1[[t]]; sumwn2= wn2[[t]]; sumwn3= wn3[[t]]; sumwn=sumwn1+sumwn2+sumwn3;};

   {qn1=sumwn1/sumwn; qn2=sumwn2/sumwn; qn3=sumwn3/sumwn; fverosimnew= Log[wn[[t]]]; delt=fverosimnew-fverosimold;};

   If[delt>0, 

     {m1=(1.0/sumwn1) (wn1[[t]] Esant[[t]]); s1=1.0/(sumwn1) (wn1[[t]] Transpose[{Esant[[t]]-m1}].{Esant[[t]]-m1});};

     {m2=(1.0/sumwn2) (wn2[[t]] Esant[[t]]); s2=1.0/(sumwn2) (wn2[[t]] Transpose[{Esant[[t]]-m2}].{Esant[[t]]-m2});};

     {m3=(1.0/sumwn3) (wn3[[t]] Esant[[t]]); s3=1.0/(sumwn3) (wn3[[t]] Transpose[{Esant[[t]]-m3}].{Esant[[t]]-m3});};

     {w1=wn1; w2=wn2; w3=wn3; w=wn; fverosimold=fverosimnew; fverosim[[iter]]=fverosimnew;};

     {sumw1=sumwn1; sumw2=sumwn2; sumw3=sumwn3; sumw=sumwn; q1=qn1; q2=qn2; q3=qn3; iter++};

   ];

   Clear[repe1,repe2,repe3,v1,v2,v3]; 

  ];

 {iter--; delt=fverosim[[iter]]-fverosim[[iter-1]]; m=q1 m1+q2 m2+q3 m3, SW=q1 s1+q2 s2+q3 s3};
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