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Abstract: This paper focuses on the estimation of physical densities using 

historical returns of index prices. Specifically, we suggest using a kernel estimator 

for estimating the objective densities and Berkowitz test for determining the 

appropriate window length. We apply the proposed methodology to Romanian 

BET Index data. The test manages to capture the jump in the data and a 

recommendation is done with respect to the length of the window to be used in the 

estimation procedure. 
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1. Introduction 

Whether stock returns are predictable or not represents a question tackled by 

researchers for a long time. With time, interest has slid from point estimates of returns 

to density estimates which can further be used for asset pricing. The literature 

distinguishes between physical or objective density and risk neutral density. The 

physical density represents an assessment of the agent acting on the financial market 

over the possibility of a certain state of nature to occur. The risk neutral density or 

state price density, which is the term generally used in preference based equilibrium 

models, is related to the concept of Arrow-Debreu Securities. The Arrow-Debreu 

securities pay one unit if a particular state of nature occurs and zero otherwise. As 

stated in Jackwerth (2000), there is a link between the two densities: the risk neutral 

density is equal to the physical density corrected by a risk adjustment factor.  

Initially, this relationship was used to evaluate the risk aversion of the agent, but 

more recently it has been used for the computation of physical density as well. For 
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instance, Bliss and Panigirtzoglu (2004) and Kang and Kim (2006) consider that the 

ratio between risk neutral density and physical density is equal to a pricing kernel, 

which is calculated based on utility functions. The risk neutral density is calculated 

based on the pricing formula of an European call option. Having the kernel and the risk 

neutral density they compute the physical density. Garcia et al (2011) link the two 

densities through an integral martingale using high frequency data available on an 

underlying asset together with option data. 

Unlike risk neutral densities which can typically be estimated using option data, 

we have the possibility to estimate physical density from historical asset price data, 

which is much easier to obtain. Jackwerth (2000) estimates the density through a 

kernel density estimator using 31 day non-overlapping returns over a four year sample. 

Prasanna and Vause (2007) use a threshold-GARCH model of the returns of the 

S&P500 index.  

In this paper, we will use kernel density estimators to estimate the physical 

density, but the main focus will lie on determining an appropriate window length 

which can be used for density estimation. More and more often we confront with 

situations where we need to deal with jumps or spikes present in the data, which 

generally cause a change in the estimated parameters. Local adaptive methods and 

rolling window techniques have been developed to deal with this kind of problems. In 

this case, we suggest using a simpler particular solution by using the Berkowitz (2001) 

test. This test was developed to evaluate whether the estimated density equals the true 

density.  In the following it will be shown how it can be used to determine the 

appropriate window length to be employed in estimation. Romanian BET index data is 

utilized. 

         The next section presents several methodologies that can be used in physical 

density estimation. The third section describes the Berkowitz test and the way it can be 

employed to serve our purpose. Section four presents an application and the last 

section concludes. 

2. Estimation of physical densities of stock returns 

Current literature offers two main approaches in terms of estimating the physical 

(objective) distribution of asset returns. The first and perhaps the simplest one is based 

on historical prices. This is why physical density is sometimes called historical density. 

The second one consists in behavioral based models via risk neutral density corrected 

by pricing kernels. Both methods will be referred to in this section. 

The method of kernel density estimation can be applied to stock prices returns in 

order to obtain a smooth, continuous probability density function (pdf). Härdle et al 

(2004) mention that the idea behind kernel density estimation lies in finding an interval 

around x , not an interval including x . Thus, the estimated pdf can be written as: 
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where K  is the kernel function, h  is the bandwidth, x  is the point at which the 

function is estimated, while n  is the sample size. Considering hXxu i /)(  

several forms of the kernel function can be found in Table 1. 

 

Table 1. Kernel functions 

 

 

        Härdle et al (2004) show that the choice of the kernel function is not so important 

in empirical studies. Basically, if we want to obtain pdf estimates based on two 

different functions that would have the same degree of smoothness, we would have to 

multiply one of the bandwidths with an adjustment factor. On the other hand, the 
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choice of the bandwidth h  seems rather crucial. The choice of a bandwidth which is 

too small may render a non-continuous estimate of the density function. Choosing a 

bandwidth that exceeds the optimal bandwidth may cause an over smoothing of the 

probability distribution function. Thus, choosing the optimal bandwidth is very 

important. One of the criterions that can be used is minimizing the cross-validation 

criterion: 
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       To estimate the density more complicated techniques can be used as in Ruxanda 

and Smeureanu (2012). They present an expected maximization algorithm which can 

be used in parametric estimation of probability distribution function of a mixture of 

distributions. 

        Bliss and Panigirtzoglu (2004) propose a different approach, starting from a very 

simple equation: 
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where is the pricing kernel, q represents the risk neutral density, while p is the 

physical density. The idea stated in this paper is that knowing any two of the three 

permits us to infer over the third one. 

       The risk neutral density is obtained from option prices. Options based on the same 

underlying asset provide different prices for different strikes, so that a pdf of the prices 

of that asset can be estimated. These pdf’s have the advantage that they represent 

forward looking forecasts of the distribution of prices of the underlying prices, but at 

the same time they convey different information than the physical densities of stock 

prices. They generally do not correspond to the beliefs of the agents on the market 

about future price movements. Therefore, the risk neutral densities need to be 

corrected by a pricing kernel.  Bliss and Panigirtzoglu (2004) use a pricing kernel that 

is based on utility functions, more specifically the power and exponential utility 

functions. In addition, Kang and Kim (2006) use the HARA utility function, the log 

plus utility function and the linear plus exponential utility function. 

       Breeden and Litzenberger (1978) show that the risk neutral pdf can be obtained 

from the price function of an European call option. Given the European call price 

option formula: 
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where tS  is the underlying asset price at time t , X  is the strike price, is the time to 

maturity, tT is the expiration date, ,tr  is the risk free rate and ,t is the 

corresponding dividend. Therefore, we can write the risk neutral density: 
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       It is worth mentioning that option quotes do not provide a continuous price 

function. As a consequence smoothing techniques need to be applied either in option 

prices or implied volatilities. More details can be found in Grith et al (2009). 

 

3. Testing density estimates 

Another challenge is to test whether the estimated distribution fits the real one. 

There are several possibilities available in the literature to do so. All of them though, 

start from the transformation of Rosenblatt (1952) below: 
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       The essential property is that the return series tx , which generally follows a heavy 

tail distribution, is transformed into a series ty  which is iid and uniformly distributed 

on (0,1). This series is easier to analyze. There are several tests which have been 

proposed to check the uniformity, but Berkowitz (2001) proposes a test which is able 

to account for both uniformity and independence. This statistic requires an additional 

transformation: 
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       Under the null hypothesis that )()(ˆ tt ff , tz  follows a )1,0(N distribution. 

Berkowitz (2001) further uses this transformation by looking at the )1(AR model: 
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       The estimated parameters are then employed to compute a likelihood ratio test 

with the null hypothesis: 

0

1var

0

: 2

0 tH  

      Knowing that the form of the likelihood function is: 
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the statistic test  can be defined as: 

                                      ))0,1,0()ˆ,ˆ,ˆ((2 2 LLLR                                 (10) 

       Under the null hypothesis the statistic follows a )3(2
 distribution. It can also be 

reduced as a simple test for independence if: 

                             ))1,ˆ,ˆ()ˆ,ˆ,ˆ((2 22 LLLRind      (11) 

which follows a )1(2
 distribution. Bliss and Panigirtzoglu (2004) prove through 

Monte Carlo simulations that this test is quite reliable in small samples as well. In 

large samples with autocorrelated data the Berkowitz test rejects with near certainty, 

while in small samples the authors find that the test rejects slightly more frequently 

than with uncorrelated data, with the rejection rate increasing in the degree of 

autocorrelation. In this paper, Berkowitz statistic is used to investigate whether the 

estimated densities for different window lengths are the same with the true densities. In 

addition, the p-value of the test is used as criteria for determining which estimated 

density is closest to the true one. Thus, the most appropriate window length is chosen 

such that the p-value of the test is maximized. 
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4. Empirical study on Romanian BET Index 

This empirical study is focused on the BET index characterizing Bucharest 

Stock Exchange. We use data from March, 21
st
 2011 to December, 26

th
 2011, 

that is a period of 200 days. We work with returns of the index. Our final 

objective is to determine an appropriate physical density estimate for the BET 

index by using the Berkowitz test, briefly described in the previous section. 

The plot in Figure 1 shows the evolution of the returns of BET index. It is 

immediately observed the spike at the middle of the third quarter. Also, it can 

be easily noticed that the market becomes significantly more volatile starting 

with this point in time. As a note, the jump corresponds to August 2011 stock 

markets’ fall across the United States, Middle East, Europe and Asia. The fall 

reflects concerns of the participants on the stock markets with respect to 

European sovereign debt crisis associated with decreases in Standard & Poor’s 

rating of United States of America, France, Italy or Spain. 

 

Figure 1. BET index stock returns 

 

The normal kernel density estimator was selected to be used in this study. The 

choice of the kernel estimator however, does not have a significant impact on the 

probability distribution of the data as it can be seen in Figure 2, which shows a 
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comparison among the normal, triangle and Epanechnikov kernel. There is a slight 

difference in the peak of the distribution, but the tails are almost identically 

represented. Choosing the optimal bandwidth is more important. For a 100 days 

estimation window the optimal bandwidth is 0039.0h . In Figure 3 it can be 

observed that choosing an underestimated or an overestimated bandwidth leads to 

significant differences in peak estimation and also in some tails estimation differences. 

In the remaining of the paper, we will use only the normal kernel estimator. To 

continue with, we stress over the importance of choosing an appropriate window 

length for estimating the probability distribution function. Figure 4, shows the 

estimated pdf’s for a window of 50 days (f1), 100 days (f2), 200 days (f3). There is an 

obvious difference in the mean and skewness. The 50 day window length density  

 

Figure 2. Normal, Triangle, Epanechnikov density estimators 

 

Figure 3. Normal kernel estimator with different bandwidths 
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Figure 4. Density estimates for different window lengths 

 

estimator is skewed to the right, while the other two estimators are skewed to the left. 

In the following we have computed p-values of the Bekowitz test for different 

window lengths (Table 2). The first window length is of 10 days and at each step we 

go behind with another 5 days. One can observe that the p-values associated with the 

first 100 days are significantly higher than the p-values for the rest of 95 days. This 

corresponds to the two period volatility clustering that has been identified before. We 

mention though that for the smallest window lengths the test may suffer some sample 

size bias and therefore accept the null hypothesis too often. Note that the test does not 

reject for any of the window lengths, but we have to specify that we have used in 

sample data. 

Further, notice the p-value that was obtained for the 100 days window length. It 

represents the highest value and it is very close to 1. Thus the test statistic does not 

reject the null hypothesis with a probability close to 1. What is more striking is that the 

p-value for the next period suffers a significant fall to 0.1654. The explanation for this 

behavior is the event that we have identified for the third quarter 2011 data. It is clear 

that data before and after this event have different distributions and therefore our 

methodology recommends choosing for estimation the 100 days window available 

before after August 2011. 
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5. Conclusions 

      In this paper, several possibilities for estimating physical or objective probability 

distribution functions were introduced. It has been shown that apart from choosing an 

appropriate kernel density estimator and an optimal bandwidth, it is critical to use a  

Table 2. Window lengths and associated p-values of the Berkowitz test 

       Window 

          Length P-value 

         Window     

            length 

P-

Value 

10 0.0966 105 0.1654 

15 0.1758 110 0.1455 

20 0.8727 115 0.1287 

25 0.9664 120 0.1834 

30 0.623 125 0.131 

35 0.7066 130 0.1194 

40 0.3952 135 0.1996 

45 0.1426 140 0.2003 

50 0.3631 145 0.2117 

55 0.6254 150 0.3028 

60 0.8825 155 0.3006 

65 0.8849 160 0.2124 

70 0.8287 165 0.2154 

75 0.7861 170 0.1791 

80 0.6524 175 0.1575 

85 0.4684 180 0.2759 

90 0.494 185 0.2973 

95 0.5475 190 0.2532 

100 0.9949                   195   0.275 
 

 
 

window length that is most suited for the set of data to be studied.  The Berkowitz test 

is used to evaluate the fit of the estimated density to the data. The p-value of the 

statistic is taken as criteria to find the most appropriate window length. Romanian BET 

Index is used for an application. The test manages to capture the fall in the returns 

series as well as the change in volatility of the data, therefore proving the usefulness of 

such a methodology for determining the appropriate window length. 
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